OFFSET
1,5
LINKS
Alois P. Heinz, Antidiagonals n = 1..141, flattened
Jean-Christophe Aval, François Bergeron, Interlaced rectangular parking functions, arXiv:1503.03991 [math.CO], 2015.
FORMULA
Some identities: A(n,k) = A(k,n); A(n,m*n) = A(n,m*n+1); A(n,n) = A000108(n); if n and k are coprime then A(n,k) = A071202(n,k).
Sum_{k=1..n-1} A(n-k,k) = A298072(n)-2 for n>0. - Lee A. Newberg, Jan 18 2018
EXAMPLE
Table starts:
1, 1, 1, 1, 1, 1, ...
1, 2, 2, 3, 3, 4, ...
1, 2, 5, 5, 7, 12, ...
1, 3, 5, 14, 14, 23, ...
1, 3, 7, 14, 42, 42, ...
...
MAPLE
b:= proc(x, y, r) option remember; `if`(y<0 or y>x*r, 0,
`if`(x=0, 1, b(x-1, y, r) +b(x, y-1, r)))
end:
A:= (n, k)-> `if`(k<n, b(k, n, n/k), b(n, k, k/n)):
seq(seq(A(n, 1+d-n), n=1..d), d=1..14); # Alois P. Heinz, Mar 20 2015
MATHEMATICA
b[x_, y_, r_] := b[x, y, r] = If[y < 0 || y > x*r, 0, If[x == 0, 1, b[x - 1, y, r] + b[x, y - 1, r]]]; A[n_, k_] := If[k < n, b[k, n, n/k], b[n, k, k/n]]; Table[Table[A[n, 1 + d - n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Jan 30 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, May 16 2002
STATUS
approved