login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071201
Array A(n,k) read by antidiagonals giving number of paths up and right from (0,0) to (n,k) where x/y<=n/k.
6
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 4, 7, 14, 7, 4, 1, 1, 4, 12, 14, 14, 12, 4, 1, 1, 5, 12, 23, 42, 23, 12, 5, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 6, 22, 55, 66, 132, 66, 55, 22, 6, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 1, 7, 26, 76, 143, 227, 429, 227, 143, 76, 26, 7, 1
OFFSET
1,5
LINKS
Jean-Christophe Aval, François Bergeron, Interlaced rectangular parking functions, arXiv:1503.03991 [math.CO], 2015.
FORMULA
Some identities: A(n,k) = A(k,n); A(n,m*n) = A(n,m*n+1); A(n,n) = A000108(n); if n and k are coprime then A(n,k) = A071202(n,k).
Sum_{k=1..n-1} A(n-k,k) = A298072(n)-2 for n>0. - Lee A. Newberg, Jan 18 2018
EXAMPLE
Table starts:
1, 1, 1, 1, 1, 1, ...
1, 2, 2, 3, 3, 4, ...
1, 2, 5, 5, 7, 12, ...
1, 3, 5, 14, 14, 23, ...
1, 3, 7, 14, 42, 42, ...
...
MAPLE
b:= proc(x, y, r) option remember; `if`(y<0 or y>x*r, 0,
`if`(x=0, 1, b(x-1, y, r) +b(x, y-1, r)))
end:
A:= (n, k)-> `if`(k<n, b(k, n, n/k), b(n, k, k/n)):
seq(seq(A(n, 1+d-n), n=1..d), d=1..14); # Alois P. Heinz, Mar 20 2015
MATHEMATICA
b[x_, y_, r_] := b[x, y, r] = If[y < 0 || y > x*r, 0, If[x == 0, 1, b[x - 1, y, r] + b[x, y - 1, r]]]; A[n_, k_] := If[k < n, b[k, n, n/k], b[n, k, k/n]]; Table[Table[A[n, 1 + d - n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Jan 30 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A090806 A241926 A174446 * A318045 A240656 A106476
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, May 16 2002
STATUS
approved