The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241926 Table read by antidiagonals: T(n,k) (n >= 1, k >= 1) is the number of necklaces with n black beads and k white beads. 14
 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 4, 3, 1, 1, 3, 5, 5, 3, 1, 1, 4, 7, 10, 7, 4, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 5, 12, 22, 26, 22, 12, 5, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Turning over the necklace is not allowed (the group is cyclic not dihedral). T(n,k) = T(k,n) follows immediately from the formula. - N. J. A. Sloane, May 03 2014 T(n, k) is the number of equivalence classes of k-tuples of residues modulo n, identifying those that differ componentwise by a constant and those that differ by a permutation. - Álvar Ibeas, Sep 21 2021 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened Paul Drube and Puttipong Pongtanapaisan, Annular Non-Crossing Matchings, Journal of Integer Sequences, Vol. 19 (2016), #16.2.4. A. Elashvili and M. Jibladze, Hermite reciprocity for the regular representations of cyclic groups, Indag. Math. (N.S.) 9 (1998), no. 2, 233--238. MR1691428 (2000c:13006) A. Elashvili, M. Jibladze and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), no. 2, 173--188. MR1719140 (2000j:05009). See p. 174. - N. J. A. Sloane, Aug 06 2014 N. J. A. Sloane, A Note on Modular Partitions and Necklaces FORMULA T(n,k) = Sum_{d | gcd(n,k)} phi(d)*binomial((n+k)/d, n/d))/(n+k). [Corrected by N. J. A. Sloane, May 03 2014] EXAMPLE The table starts: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, ... 1, 2, 4, 5, 7, 10, 12, 15, 19, 22, 26, 31, ... 1, 3, 5, 10, 14, 22, 30, 43, 55, 73, 91, 116, ... 1, 3, 7, 14, 26, 42, 66, 99, 143, 201, 273, 364, ... 1, 4, 10, 22, 42, 80, 132, 217, 335, 504, 728, 1038, ... ... MAPLE # Maple program for the table - N. J. A. Sloane, May 03 2014: with(numtheory); T:=proc(n, k) local d, s, g, t0; t0:=0; s:=n+k; g:=gcd(n, k); for d from 1 to s do if (g mod d) = 0 then t0:=t0+phi(d)*binomial(s/d, k/d); fi; od: t0/s; end; r:=n->[seq(T(n, k), k=1..12)]; [seq(r(n), n=1..12)]; MATHEMATICA T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#] Binomial[(n+k)/#, n/#]& ]/ (n+k); Table[T[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 02 2015 *) PROG (PARI) T(n, k) = sumdiv(gcd(n, k), d, eulerphi(d)*binomial((n+k)\d, n\d))/(n+k) CROSSREFS Same as A047996 with first row and main diagonal removed. A037306 is yet another version. Cf. A003239 (main diagonal). See A245558, A245559 for a closely related array. Sequence in context: A275298 A048570 A090806 * A174446 A071201 A318045 Adjacent sequences: A241923 A241924 A241925 * A241927 A241928 A241929 KEYWORD nonn,tabl AUTHOR Franklin T. Adams-Watters, May 02 2014 EXTENSIONS Edited by N. J. A. Sloane, May 03 2014 Elashvili et al. references supplied by Vladimir Popov, May 17 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 06:53 EDT 2024. Contains 371799 sequences. (Running on oeis4.)