|
|
A241924
|
|
16*s^8 - 168*s^4*t^4 + 9*t^8, where s > 0, t = 1..s.
|
|
3
|
|
|
-143, 1417, -36608, 91377, -110448, -938223, 1005577, 362752, -2376023, -9371648, 6145009, 4572304, -2195951, -20040176, -55859375, 26656137, 23392512, 9296937, -28274688, -105690519, -240185088, 91833457, 85785232, 59623057, -10435568, -156352559
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Sequence lists, in nonincreasing order, the y-values in special solutions to x^4 + y^3 = z^2, that is: A241923(n)^4 + a(n)^3 = A241925(n)^2 (see also Cohen's post in Links section).
Note that 16*s^8 - 168*s^4*t^4 + 9*t^8 = (4*s^4 - 12*s^2*t^2 - 3*t^4)*(4s^4 + 12*s^2*t^2 - 3*t^4).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
D. Alpern, List of first 1602 solutions to a^4 + b^3 = c^2 for increasing values of a, where gcd(a,b,c) = 1.
D. Alpern, Sum of powers, a^4 + b^3 = c^2.
Henri Cohen, a^m + b^n = c^p (was: Sum of two powers = Square), post in the newsgroup sci.math.research, Jan 09 1998.
|
|
MATHEMATICA
|
Flatten[Table[16 s^8 - 168 s^4 t^4 + 9 t^8, {s, 10}, {t, s}]]
|
|
PROG
|
(MAGMA) [16*s^8-168*s^4*t^4+9*t^8: t in [1..s], s in [1..10]];
|
|
CROSSREFS
|
Cf. A096741, A241923, A241925.
Sequence in context: A074301 A156635 A035304 * A185514 A220292 A159054
Adjacent sequences: A241921 A241922 A241923 * A241925 A241926 A241927
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Vincenzo Librandi, May 02 2014
|
|
STATUS
|
approved
|
|
|
|