The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241924 16*s^8 - 168*s^4*t^4 + 9*t^8, where s > 0, t = 1..s. 3
 -143, 1417, -36608, 91377, -110448, -938223, 1005577, 362752, -2376023, -9371648, 6145009, 4572304, -2195951, -20040176, -55859375, 26656137, 23392512, 9296937, -28274688, -105690519, -240185088, 91833457, 85785232, 59623057, -10435568, -156352559 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Sequence lists, in nonincreasing order, the y-values in special solutions to x^4 + y^3 = z^2, that is: A241923(n)^4 + a(n)^3 = A241925(n)^2 (see also Cohen's post in Links section). Note that 16*s^8 - 168*s^4*t^4 + 9*t^8 = (4*s^4 - 12*s^2*t^2 - 3*t^4)*(4s^4 + 12*s^2*t^2 - 3*t^4). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Dario Alpern, List of first 1602 solutions to a^4 + b^3 = c^2 for increasing values of a, where gcd(a,b,c) = 1. Dario Alpern, Sum of powers, a^4 + b^3 = c^2. Henri Cohen, a^m + b^n = c^p (was: Sum of two powers = Square), post in the newsgroup sci.math.research, Jan 09 1998. MATHEMATICA Flatten[Table[16 s^8 - 168 s^4 t^4 + 9 t^8, {s, 10}, {t, s}]] PROG (Magma) [16*s^8-168*s^4*t^4+9*t^8: t in [1..s], s in [1..10]]; CROSSREFS Cf. A096741, A241923, A241925. Sequence in context: A156635 A354483 A035304 * A185514 A220292 A159054 Adjacent sequences: A241921 A241922 A241923 * A241925 A241926 A241927 KEYWORD sign AUTHOR Vincenzo Librandi, May 02 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 12:15 EDT 2023. Contains 365501 sequences. (Running on oeis4.)