login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318045
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 2, 3 or 4 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
8
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 6, 21, 21, 6, 1, 1, 17, 86, 140, 86, 17, 1, 1, 46, 377, 905, 905, 377, 46, 1, 1, 124, 1648, 6179, 10563, 6179, 1648, 124, 1, 1, 341, 7261, 42793, 116212, 116212, 42793, 7261, 341, 1, 1, 947, 31969, 297043, 1304057, 2098813
OFFSET
1,5
COMMENTS
Table starts
.1...1.....1.......1.........1...........1............1..............1
.1...2.....2.......3.........6..........17...........46............124
.1...2.....8......21........86.........377.........1648...........7261
.1...3....21.....140.......905........6179........42793.........297043
.1...6....86.....905.....10563......116212......1304057.......14683085
.1..17...377....6179....116212.....2098813.....37826270......685931021
.1..46..1648...42793...1304057....37826270...1097286743....32035215365
.1.124..7261..297043..14683085...685931021..32035215365..1507709268026
.1.341.31969.2056698.165135266.12431437346.933917327711.70833352314014
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2) +a(n-3) +a(n-4) -2*a(n-5) -a(n-6) for n>7
k=3: [order 21] for n>23
k=4: [order 72] for n>74
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..1. .0..1..0..1. .0..0..1..0. .0..0..1..1. .0..1..0..1
..1..0..1..0. .1..1..1..0. .0..1..0..1. .0..1..0..0. .1..1..0..0
..0..1..1..0. .0..1..0..1. .1..0..1..0. .1..0..0..1. .0..0..1..1
..0..1..0..1. .1..0..0..1. .0..1..1..0. .1..1..0..0. .1..1..0..0
..1..0..1..0. .1..0..1..0. .1..0..0..1. .0..1..0..1. .0..1..0..1
CROSSREFS
Sequence in context: A241926 A174446 A071201 * A240656 A106476 A101566
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 13 2018
STATUS
approved