The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318047 a(n) = sum of values taken by all parking functions of length n. 2
 1, 8, 81, 1028, 15780, 284652, 5903464, 138407544, 3619892160, 104485268960, 3299177464704, 113120695539612, 4185473097734656, 166217602768452900, 7051983744002135040, 318324623296131263408, 15232941497754507165696, 770291040239888149405944, 41042353622873800536064000, 2298206207793743728251532020 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..100 Y. Yao and D. Zeilberger, An Experimental Mathematics Approach to the Area Statistics of Parking Functions, arXiv 1806.02680, 2018 FORMULA a(n) is the first derivative of P(n,1,x) evaluated at x = 1 where P(n,m,x) satisfies P(n,m,x) = x^n*Sum_{k=0..n} binomial(n,k)*P(n-k, m+k-1, x) with P(0,m,x) = 1 and P(n,0,x) = 0 for n > 0. a(n) = Sum_{k=1..n} k*A298593(n, k). - Andrew Howroyd, Aug 17 2018 EXAMPLE Case n = 2: There are 3 parking functions of length 2: [1, 1], [1, 2], [2, 1]. Summing up all values gives 2 + 3 + 3 = 8, so a(2) = 8. Case n = 3: There are 16 parking functions of length 3: [1, 1, 1], [1, 1, 2], [1, 1, 3], [1, 2, 1], [1, 2, 2], [1, 2, 3], [1, 3, 1], [1, 3, 2], [2, 1, 1], [2, 1, 2], [2, 1, 3], [2, 2, 1], [2, 3, 1], [3, 1, 1], [3, 1, 2], [3, 2, 1]. Summing up all values gives a total of 81, so a(3) = 81. MAPLE #Pnax(n, a, x): the sum of x^(sum of all entries in the parking function) over the set of a-parking functions of length n by recurrence relation. Pnax:=proc(n, a, x) local k: option remember: if n=0 then   return 1: fi: if n>0 and a=0 then   return 0: fi: return expand(x^n*add(binomial(n, k)*Pnax(n-k, a+k-1, x), k=0..n)): end: seq(subs(x = 1, diff(Pnax(n, 1, x), x)), n = 1 .. 20) MATHEMATICA T[n_, k_] := n Sum[Binomial[n-1, j-1] j^(j-2) (n-j+1)^(n-j-1), {j, k, n}]; a[n_] := Sum[k T[n, k], {k, 1, n}]; Array[a, 20] (* Jean-François Alcover, Aug 29 2018, after Andrew Howroyd *) PROG (PARI) \\ here T(n, k) is A298593. T(n, k)={n*sum(j=k, n, binomial(n-1, j-1)*j^(j-2)*(n+1-j)^(n-1-j))} a(n)={sum(k=1, n, k*T(n, k))} \\ Andrew Howroyd, Aug 17 2018 CROSSREFS Cf. A000272, A298593. Sequence in context: A007778 A065440 A338694 * A338685 A092366 A022519 Adjacent sequences:  A318044 A318045 A318046 * A318048 A318049 A318050 KEYWORD nonn AUTHOR Yukun Yao, Aug 13 2018 EXTENSIONS Edited by Andrew Howroyd and N. J. A. Sloane, Aug 19 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 08:27 EDT 2021. Contains 345453 sequences. (Running on oeis4.)