The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298593 Triangle read by rows: T(n,k) = number of times the value k appears on the parking functions of length n. 4
 1, 4, 2, 24, 15, 9, 200, 136, 100, 64, 2160, 1535, 1215, 945, 625, 28812, 21036, 17286, 14406, 11526, 7776, 458752, 341103, 286671, 247296, 211456, 172081, 117649, 8503056, 6405904, 5464712, 4811528, 4251528, 3691528, 3038344, 2097152, 180000000, 136953279, 118078911, 105372819, 94921875, 85078125, 74627181, 61921089, 43046721 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS T(n,k) is the number of pairs (f,i) such that f is a parking function and f(i) = k. LINKS FORMULA T(n,k) = n*Sum_{j=k..n} binomial(n-1, j-1)*j^(j-2)*(n+1-j)^(n-1-j). T(n,k) = n*A298592(n,k). T(n,k) = n*Sum_{j=k..n} A298594(n,j). T(n,k) = Sum_{j=k..n} A298597(n,j). Sum_{k=1..n} T(n,k) = n*A000272(n+1). T(n+1,1) = A089946(n), T(n,n) = A000169(n). - Andrey Zabolotskiy, Feb 21 2018 EXAMPLE Triangle begins: ==================================================================== n\k|       1       2       3       4       5       6       7       8 ---|---------------------------------------------------------------- 1  |       1 2  |       4       2 3  |      24      15       9 4  |     200     136     100      64 5  |    2160    1535    1215     945     625 6  |   28812   21036   17286   14406   11526    7776 7  |  458752  341103  286671  247296  211456  172081  117649 8  | 8503056 6405904 5464712 4811528 4251528 3691528 3038344 2097152   ... MATHEMATICA Table[n Sum[Binomial[n - 1, j - 1] j^(j - 2)*(n + 1 - j)^(n - 1 - j), {j, k, n}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 22 2018 *) CROSSREFS Cf. A000169, A000272, A089946, A298592, A298594, A298597. Sequence in context: A241437 A030211 A134461 * A228474 A058167 A140331 Adjacent sequences:  A298590 A298591 A298592 * A298594 A298595 A298596 KEYWORD easy,nonn,tabl AUTHOR Rui Duarte, Jan 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 12:23 EDT 2021. Contains 346422 sequences. (Running on oeis4.)