login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134461
Expansion of (phi(x) * psi(-x))^4 in powers of x where phi(), psi() are Ramanujan theta functions.
3
1, 4, -2, -24, -11, 44, 22, -8, 50, -44, -96, 56, -121, -152, 198, 160, 176, 48, -162, 88, -198, -52, 22, -528, 233, 200, -242, -88, -176, 668, 550, 264, -44, -188, 224, -728, 154, -484, -1056, 656, -311, -236, -100, 792, 714, -528, 640, 88, -478, -484, 1566, 968, 192, 780, -1994, -648, -942
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 34 of the 74 eta-quotients listed in Table I of Martin (1996).
LINKS
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * (eta(q^2)^4 / (eta(q) * eta(q^4)))^4 in powers of q.
Euler transform of period 4 sequence [ 4, -12, 4, -8, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = b(p)*b(p^(e-1)) - p^3*b(p^(e-2)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 256 (t/i)^4 f(t) where q = exp(2 Pi i t).
G.f.: (Product_{k>0} (1 + x^k) * (1 - x^(2*k))^2 / (1 + x^(2*k)))^4.
a(n) = (-1)^n * A030211(n).
Convolution square is A216711. - Michael Somos, Jun 10 2015
EXAMPLE
G.f. = 1 + 4*x - 2*x^2 - 24*x^3 - 11*x^4 + 44*x^5 + 22*x^6 - 8*x^7 + ...
G.f. = q + 4*q^3 - 2*q^5 - 24*q^7 - 11*q^9 + 44*q^11 + 22*q^13 - 8*q^15 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^2] EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8)))^4, {x, 0, n}]; (* Michael Somos, Jun 10 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^2 + A)^4 / (eta(x + A) * eta(x^4 + A)) )^4, n))};
(Magma) A := Basis( CuspForms( Gamma0(16), 4), 115); A[1] + 4*A[3]; /* Michael Somos, Jun 10 2015 */
CROSSREFS
Cf. A216711.
The same as A030211 except for signs.
Sequence in context: A336601 A241437 A030211 * A298593 A228474 A058167
KEYWORD
sign
AUTHOR
Michael Somos, Oct 26 2007
STATUS
approved