login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (phi(x) * psi(-x))^4 in powers of x where phi(), psi() are Ramanujan theta functions.
3

%I #29 Sep 08 2022 08:45:32

%S 1,4,-2,-24,-11,44,22,-8,50,-44,-96,56,-121,-152,198,160,176,48,-162,

%T 88,-198,-52,22,-528,233,200,-242,-88,-176,668,550,264,-44,-188,224,

%U -728,154,-484,-1056,656,-311,-236,-100,792,714,-528,640,88,-478,-484,1566,968,192,780,-1994,-648,-942

%N Expansion of (phi(x) * psi(-x))^4 in powers of x where phi(), psi() are Ramanujan theta functions.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Number 34 of the 74 eta-quotients listed in Table I of Martin (1996).

%H Seiichi Manyama, <a href="/A134461/b134461.txt">Table of n, a(n) for n = 0..10000</a>

%H Y. Martin, <a href="http://dx.doi.org/10.1090/S0002-9947-96-01743-6">Multiplicative eta-quotients</a>, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

%H Michael Somos, <a href="/A030203/a030203.txt">Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q^(-1/2) * (eta(q^2)^4 / (eta(q) * eta(q^4)))^4 in powers of q.

%F Euler transform of period 4 sequence [ 4, -12, 4, -8, ...].

%F a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = b(p)*b(p^(e-1)) - p^3*b(p^(e-2)).

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 256 (t/i)^4 f(t) where q = exp(2 Pi i t).

%F G.f.: (Product_{k>0} (1 + x^k) * (1 - x^(2*k))^2 / (1 + x^(2*k)))^4.

%F a(n) = (-1)^n * A030211(n).

%F Convolution square is A216711. - _Michael Somos_, Jun 10 2015

%e G.f. = 1 + 4*x - 2*x^2 - 24*x^3 - 11*x^4 + 44*x^5 + 22*x^6 - 8*x^7 + ...

%e G.f. = q + 4*q^3 - 2*q^5 - 24*q^7 - 11*q^9 + 44*q^11 + 22*q^13 - 8*q^15 + ...

%t a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^2] EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8)))^4, {x, 0, n}]; (* _Michael Somos_, Jun 10 2015 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^2 + A)^4 / (eta(x + A) * eta(x^4 + A)) )^4, n))};

%o (Magma) A := Basis( CuspForms( Gamma0(16), 4), 115); A[1] + 4*A[3]; /* _Michael Somos_, Jun 10 2015 */

%Y Cf. A216711.

%Y The same as A030211 except for signs.

%K sign

%O 0,2

%A _Michael Somos_, Oct 26 2007