login
A134462
Centered decagonal palindromic primes; or palindromic primes of the form 5k^2 + 5k + 1.
2
11, 101, 151, 1598951, 1128512158211, 104216919612401, 107635959536701, 106906347292743609601, 165901968762984246868642489267869109561
OFFSET
1,1
COMMENTS
Sequence is the intersection of the palindromic primes = A002385 = {2, 3, 5, 7, 11, 101, 131, 151, ...} and the centered 10-gonal numbers = A062786 = {1, 11, 31, 61, 101, 151, ...}. Corresponding numbers k such that 5k^2 + 5k + 1 is a term of A134462 are listed in A134463 = {1, 4, 5, 565, 475081, ...}. Note that the first 4 terms of A134463 are palindromic as well.
a(9) > 10^25. - Donovan Johnson, Feb 13 2011
a(10) > 10^39. - Patrick De Geest, May 29 2021
LINKS
Eric Weisstein's World of Mathematics, Palindromic Prime
MATHEMATICA
Do[ f=5k^2+5k+1; If[ PrimeQ[f] && FromDigits[ Reverse[ IntegerDigits[ f ] ] ] == f, Print[ f ] ], {k, 1, 500000} ]
CROSSREFS
Cf. A002385 = Palindromic primes.
Cf. A062786 = Centered 10-gonal numbers.
Cf. A090562 = Primes of the form 5k^2 + 5k + 1.
Cf. A090563 = Values of k such that 5k^2 + 5k + 1 is a prime.
Cf. A134463 = Values of k such that 5k^2 + 5k + 1 is a palindromic prime.
Sequence in context: A052035 A083144 A058411 * A156753 A118592 A156617
KEYWORD
more,nonn,base
AUTHOR
Alexander Adamchuk, Oct 26 2007
EXTENSIONS
More terms from Tomas J. Bulka (tbulka(AT)rodincoil.com), Aug 30 2009
a(8) from Donovan Johnson, Feb 13 2011
a(9) from Patrick De Geest, May 29 2021
STATUS
approved