The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058411 Numbers k such that k^2 contains only digits {0,1,2}, not ending with zero. 11
 1, 11, 101, 149, 1001, 1011, 1101, 10001, 10011, 11001, 14499, 100001, 100011, 100101, 101001, 110001, 316261, 1000001, 1000011, 1000101, 1010001, 1010011, 1100001, 1100101, 10000001, 10000011, 10000101, 10001001, 10001011, 10001101, 10010001, 10100001, 10100011, 10110001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sporadic solutions (not consisting only of digits 0 and 1): a(4) = 149, a(11) = 14499, a(17) = 316261, a(209) = 4604367505011, a(715) = 10959977245460011, a(1015) = 110000500908955011, a(1665) = 10099510939154979751, ... Three infinite subsequences are given by numbers of the form 10...01, 10...011 and 110...01, but there are many others. - M. F. Hasler, Nov 14 2017 From Zhao Hui Du, Mar 12 2024: (Start) Most terms have a special pattern in that they have only digits 0 and 1 and could be written as Sum_{h=0..t} 10^x(h), where 2x(h) and x(h1)+x(h2) are distinct and x(0)=0 for the nonzero ending constraint. The number of n-digit terms in the sequence in the special pattern is A143823(n) - 2*A143823(n-1) + A143823(n-2) for n >= 2. Terms with only digits 0 and 1 but not in the special pattern exist as well. If we define f(x) = 1 + x^768 + x^960 + x^1008 + x^1020 + x^1028 + x^1040 + x^1088 + x^1280 + x^2048, f(x)^2 is a function with all nonzero coefficients 1,2,10 (the only coefficient of x^2048 is 10 and the coefficient of x^2049 is 0). So f(10) is in the sequence but not in the special pattern. (End) LINKS Zhao Hui Du, Table of n, a(n) for n = 1..4000 (first 1000 terms from Chai Wah Wu; 1001..1269 from M. F. Hasler) Patrick De Geest, Index to related sequences. Hisanori Mishima, Sporadic tridigital solutions. OEIS Wiki, Index to sequences related to squares having only given digits. FORMULA a(n) = sqrt(A058412(n)). - Zak Seidov, Jul 01 2013 MAPLE R[1]:= {1, 9}; for m from 2 to 10 do R[m]:= select(t -> max(convert(t^2 mod 10^m, base, 10)) <= 2, map(s -> seq(s + i*10^(m-1), i=0..9), R[m-1])) od: Res:= {seq(op(select(t -> t >= 10^(m-1) and max(convert(t^2, base, 10)) <= 2, R[m])), m=1..10)}: sort(convert(Res, list)); # Robert Israel, Feb 23 2016 MATHEMATICA Select[Range[10^6], And[Total@ Take[RotateRight@ DigitCount@ #, -7] == 0, Mod[#, 10] != 0] &[#^2] &] (* Michael De Vlieger, Nov 14 2017 *) PROG (Python) A058411_list = [i for i in range(10**6) if i % 10 and max(str(i**2)) < '3'] # Chai Wah Wu, Feb 23 2016 (PARI) isok(n)={ n%10 && vecmax(digits(n^2)) < 3 } \\ Michel Marcus, Feb 24 2016, edited by M. F. Hasler, Nov 14 2017 (Magma) [n: n in [1..2*10^8 by 2] | Set(Intseq(n^2)) subset [0, 1, 2]]; // Vincenzo Librandi, Feb 24 2016 CROSSREFS Cf. A058412 (the squares); A058412, ..., A058474 (other 3-digit combinations). Cf. A063009, A066139. - Zak Seidov, Jul 01 2013 Sequence in context: A109830 A052035 A083144 * A134462 A156753 A118592 Adjacent sequences: A058408 A058409 A058410 * A058412 A058413 A058414 KEYWORD nonn,base AUTHOR Patrick De Geest, Nov 15 2000 EXTENSIONS b-file corrected by Zhao Hui Du, Mar 07 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 08:52 EDT 2024. Contains 372760 sequences. (Running on oeis4.)