|
|
A134465
|
|
Row sums of triangle A134464.
|
|
4
|
|
|
1, 6, 16, 32, 55, 86, 126, 176, 237, 310, 396, 496, 611, 742, 890, 1056, 1241, 1446, 1672, 1920, 2191, 2486, 2806, 3152, 3525, 3926, 4356, 4816, 5307, 5830, 6386, 6976, 7601, 8262, 8960, 9696, 10471, 11286, 12142, 13040, 13981, 14966
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) is the number of compositions of n+9 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
|
|
LINKS
|
|
|
FORMULA
|
Binomial transform of [1, 5, 5, 1, 0, 0, 0, ...].
G.f.: x*(1+2*x-2*x^2) / (1-x)^4. - R. J. Mathar, Apr 04 2012
|
|
EXAMPLE
|
a(4) = 32 = sum of row 4, triangle A134464: (4 + 6 + 9 + 13).
a(4) = 32 = (1, 3, 3, 1) dot (1, 5, 5, 1) = (1 + 15 + 15 + 1).
|
|
MATHEMATICA
|
CoefficientList[Series[(1+2*x-2*x^2)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 29 2012 *)
|
|
PROG
|
(Magma) I:=[1, 6, 16, 32]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 29 2012
(PARI) Vec(x*(1+2*x-2*x^2)/(1-x)^4 + O(x^50)) \\ Altug Alkan, Jan 07 2016
(Sage) ((1+2*x-2*x^2)/(1-x)^4).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
(GAP) a:=[1, 6, 16, 32];; for n in [5..50] do a[n]:=4*a[n-1]-6*a[n-2]+ 4*a[n-3]-a[n-4]; od; a; # G. C. Greubel, May 08 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|