|
|
A131949
|
|
Row sums of triangle A131948.
|
|
2
|
|
|
1, 6, 16, 32, 56, 92, 148, 240, 400, 692, 1244, 2312, 4408, 8556, 16804, 33248, 66080, 131684, 262828, 525048, 1049416, 2098076, 4195316, 8389712, 16778416, 33555732, 67110268, 134219240, 268437080, 536872652, 1073743684, 2147485632, 4294969408, 8589936836
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
Binomial transform of (1, 5, 5, 1, 1, 1, ...).
G.f.: 1-2*x*(-3+7*x-3*x^2+x^3) / ( (2*x-1)*(x-1)^3 ). - R. J. Mathar, Apr 04 2012
a(n) = 2^n + 2*n + 2*n^2.
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n > 3.
(End)
|
|
EXAMPLE
|
a(3) = 32 = sum of row 3 terms, triangle A131948: (7 + 9 + 9 + 7).
a(3) = 32 = (1, 3, 3, 1) dot (1, 5, 5, 1) = (1 + 15 + 15 + 1).
|
|
MATHEMATICA
|
LinearRecurrence[{5, -9, 7, -2}, {1, 6, 16, 32}, 30] (* Harvey P. Dale, Feb 24 2016 *)
|
|
PROG
|
(PARI) Vec((1 + x - 5*x^2 - x^3) / ((1 - x)^3*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Nov 04 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|