login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131947
Expansion of (1 - (phi(-q) * phi(-q^3))^2)/4 in powers of q where phi() is a Ramanujan theta function.
2
1, -1, 1, -5, 6, -1, 8, -13, 1, -6, 12, -5, 14, -8, 6, -29, 18, -1, 20, -30, 8, -12, 24, -13, 31, -14, 1, -40, 30, -6, 32, -61, 12, -18, 48, -5, 38, -20, 14, -78, 42, -8, 44, -60, 6, -24, 48, -29, 57, -31, 18, -70, 54, -1, 72, -104, 20, -30, 60, -30, 62
OFFSET
1,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Eq. (32.66).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
a(n) is multiplicative with a(2^e) = 3 - 2^(e+1), a(3^e) = 1, a(p^e) = (p^(e+1) - 1) / (p-1) if p>3.
G.f.: Sum_{k>0} k * (-x)^k / (1 - x^k) * Kronecker(9, k) = ((theta_3(-x) * theta_3(-x^3))^2 - 1) / 4.
a(n) = -(-1)^n * A113262(n). -4 * a(n) = A131946(n) unless n=0.
Dirichlet g.f.: (1 - 1/2^(s-2)) * (1 - 1/3^(s-1)) * zeta(s-1) * zeta(s). - Amiram Eldar, Sep 12 2023
EXAMPLE
G.f. = x - x^2 + x^3 - 5*x^4 + 6*x^5 - x^6 + 8*x^7 - 13*x^8 + x^9 - 6*x^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1 - (EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^3])^2) / 4, {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
a[ n_] := SeriesCoefficient[ (1 - (QPochhammer[ q] QPochhammer[ q^3])^4 / (QPochhammer[ q^2] QPochhammer[ q^6])^2) / 4, {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
a[ n_] := If[ n < 1, 0, Sum[ d {0, 1, -1, 0, -1, 1}[[Mod[ d, 6] + 1]], {d, Divisors @ n}]]; (* Michael Somos, Nov 11 2015 *)
a[ n_] := If[ n < 1, 0, Sum[ n/d {6, 1, -3, -2, -3, 1}[[Mod[ d, 6] + 1]], {d, Divisors @ n}]]; (* Michael Somos, Nov 11 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d*((abs(d%6-3) == 2) - (abs(d%6-3) == 1))))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - (eta(x + A) * eta(x^3 + A))^4 / (eta(x^2 + A) * eta(x^6 + A))^2) / 4, n))};
(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 3 - p^(e+1), p==3, 1, (p^(e+1) - 1) / (p-1) )))};
CROSSREFS
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Jul 30 2007
STATUS
approved