login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113262
One quarter of the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.
4
1, 1, 1, 5, 6, 1, 8, 13, 1, 6, 12, 5, 14, 8, 6, 29, 18, 1, 20, 30, 8, 12, 24, 13, 31, 14, 1, 40, 30, 6, 32, 61, 12, 18, 48, 5, 38, 20, 14, 78, 42, 8, 44, 60, 6, 24, 48, 29, 57, 31, 18, 70, 54, 1, 72, 104, 20, 30, 60, 30, 62, 32, 8, 125, 84, 12, 68, 90, 24, 48, 72, 13, 74, 38, 31
OFFSET
1,4
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 223, Entry 3(iv).
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 229.
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.3), p. 76, Eq. (31.43).
LINKS
FORMULA
a(n) is multiplicative with a(3^e) = 1, a(2^e) = 2^(e+1) - 3, a(p^e) = (p^(e+1) - 1) / (p - 1) if p > 3.
G.f.: Sum_{k>0} k * x^k / (1 - (-x)^k) * Kronecker(9, k) = ((theta_3(x) * theta_3(x^3))^2 - 1) / 4.
A034896(n) = 4*a(n) if n > 0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/24 = 0.411233... (A222171). - Amiram Eldar, Dec 01 2022
Dirichlet g.f.: zeta(s)*zeta(s-1)*(4^(1-s)-2^(1-s)+1)*(1-3^(1-s)). - Amiram Eldar, Jan 06 2023
MATHEMATICA
A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Table[A034896[n]/4, {n, 1, 50}] (* G. C. Greubel, Dec 24 2017 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, # KroneckerSymbol[ 9, #] (-1)^(n + #) &]]; (* Michael Somos, Nov 10 2018 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d * kronecker(9, d) * (-1)^(n-d)))};
(PARI) {a(n) = my(A, p, e); if(n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==3, 1, (p^(e+1) - 1) / (p - 1) - 2*(p==2))))};
CROSSREFS
Sequence in context: A021182 A175647 A131947 * A195823 A105577 A054655
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Oct 21 2005
STATUS
approved