OFFSET
1,4
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 223, Entry 3(iv).
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 229.
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.3), p. 76, Eq. (31.43).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
FORMULA
a(n) is multiplicative with a(3^e) = 1, a(2^e) = 2^(e+1) - 3, a(p^e) = (p^(e+1) - 1) / (p - 1) if p > 3.
G.f.: Sum_{k>0} k * x^k / (1 - (-x)^k) * Kronecker(9, k) = ((theta_3(x) * theta_3(x^3))^2 - 1) / 4.
A034896(n) = 4*a(n) if n > 0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/24 = 0.411233... (A222171). - Amiram Eldar, Dec 01 2022
Dirichlet g.f.: zeta(s)*zeta(s-1)*(4^(1-s)-2^(1-s)+1)*(1-3^(1-s)). - Amiram Eldar, Jan 06 2023
MATHEMATICA
A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Table[A034896[n]/4, {n, 1, 50}] (* G. C. Greubel, Dec 24 2017 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, # KroneckerSymbol[ 9, #] (-1)^(n + #) &]]; (* Michael Somos, Nov 10 2018 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d * kronecker(9, d) * (-1)^(n-d)))};
(PARI) {a(n) = my(A, p, e); if(n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==3, 1, (p^(e+1) - 1) / (p - 1) - 2*(p==2))))};
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Oct 21 2005
STATUS
approved