OFFSET
1,2
COMMENTS
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 249, Entry 8(iv).
LINKS
Michael Somos, Introduction to Ramanujan theta functions, 2019.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
a(n) is multiplicative with a(2^e) = ((-2)^(e+2)-1)/3, a(5^e) = 1, a(p^e) = (p^(e+1)-1)/(p-1) if p == 1, 4 (mod 5), a(p^e) = ((-p)^(e+1)-1)/(-p-1) if p == 2, 3 (mod 5).
G.f.: Sum_{k>0} (k*x^k / (1 + x^k)) * Kronecker(5, k).
A113259(n) = 5*a(n) if n > 0.
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(10*sqrt(5)) = 0.441382... . - Amiram Eldar, Jan 22 2024
EXAMPLE
G.f. = x - 3*x^2 - 2*x^3 + 5*x^4 + x^5 + 6*x^6 - 6*x^7 - 11*x^8 + 7*x^9 + ... - Michael Somos, Sep 07 2018
MATHEMATICA
a[ n_] := If[ n < 1, 0, -DivisorSum[ n, # KroneckerSymbol[ 5, #] (-1)^(n/#) &]]; (* Michael Somos, Sep 07 2018 *)
PROG
(PARI) {a(n) = if( n<1, 0, -sumdiv(n, d, d * kronecker(5, d) * (-1)^(n/d)))};
(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==5, 1, p==2, ((-2)^(e+2) - 1)/3, p *= kronecker(5, p); (p^(e+1) - 1) / (p - 1))))};
CROSSREFS
KEYWORD
sign,mult,changed
AUTHOR
Michael Somos, Oct 20 2005
STATUS
approved