login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113261
Expansion of (9*phi(q)*phi(q^3)^5 - phi(q)^5*phi(q^3))/8 in powers of q where phi(q) is a Ramanujan theta function.
3
1, 1, -5, 1, 11, -24, -5, 50, -53, 1, 120, -120, 11, 170, -250, -24, 203, -288, -5, 362, -264, 50, 600, -528, -53, 601, -850, 1, 550, -840, 120, 962, -821, -120, 1440, -1200, 11, 1370, -1810, 170, 1272, -1680, -250, 1850, -1320, -24, 2640, -2208, 203, 2451, -3005, -288, 1870, -2808
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 226 Entry 4(ii).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 12 sequence [1, -6, 6, -5, 1, -12, 1, -5, 6, -6, 1, -6, ...].
Expansion of eta(q^2)^7 * eta(q^6)^11 / (eta(q) * eta(q^3)^5 * eta(q^4) * eta(q^12)^5) in powers of q.
a(n) is multiplicative and a(3^e) = 1, a(2^e) = ((-4)^(e+1)-1)/(-4-1)-2, a(p^e) = ((-p^2)^(e+1)-1)/(-p-1) if p == 2 (mod 3), a(p^e) = ((p^2)(e+1)-1)/(p-1) if p == 1 (mod 3).
G.f.: 1 + Sum_{k>0} k^2 x^k/(1-(-x)^k) Kronecker(-3, k).
EXAMPLE
G.f. = 1 + q - 5*q^2 + q^3 + 11*q^4 - 24*q^5 - 5*q^6 + 50*q^7 + ... - Michael Somos, Sep 07 2018
MATHEMATICA
a[n_]:= SeriesCoefficient[(9*EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3]^5 - EllipticTheta[3, 0, q]^5*EllipticTheta[3, 0, q^3])/8, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Feb 09 2018 *)
PROG
(PARI) {a(n) = if( n<1, n==0, sumdiv(n, d, d^2 * kronecker(-3, d) * (-1)^(n-d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^6 + A)^11 / (eta(x + A) * eta(x^3 + A)^5 * eta(x^4 + A) * eta(x^12 + A)^5), n))};
(PARI) {a(n) = my(A, p, e, t); if( n<1, n==0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, t=p^2*(-1)^(p%3==2); (t^(e+1) - 1) / (t-1) - 2*(p==2))))};
CROSSREFS
Sequence in context: A332733 A132000 A132001 * A063004 A351573 A347135
KEYWORD
sign,mult
AUTHOR
Michael Somos, Oct 21 2005
STATUS
approved