login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132001
Expansion of 1 - (1/3) * b(q) * b(q^2) * c(q)^2 / c(q^2) in powers of q where b(), c() are cubic AGM functions.
1
1, 5, 1, -11, -24, 5, 50, 53, 1, -120, -120, -11, 170, 250, -24, -203, -288, 5, 362, 264, 50, -600, -528, 53, 601, 850, 1, -550, -840, -120, 962, 821, -120, -1440, -1200, -11, 1370, 1810, 170, -1272, -1680, 250, 1850, 1320, -24, -2640, -2208, -203, 2451, 3005
OFFSET
1,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Eq. (32.71).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 1 - phi(-q)^2 * phi(-q^3)^2 * psi(q)^3 / psi(q^3) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of 1 - eta(q) * eta(q^2)^4 * eta(q^3)^5 / eta(q^6)^4 in powers of q.
a(n) is multiplicative with a(2^e) = 2 + ((-4)^(e+1) - 1)/5, a(3^e) = 1, a(p^e) = (q^(e+1) - 1) / (q - 1) where q = p^2 * Kronecker(-3, p) if p > 3.
a(3*n) = a(n).
G.f.: Sum_{k>0} k^2 * Kronecker(-3,k) * x^k / (1 - (-x)^k) = 1 - Product_{k>0} (1 - x^(3k)) * (1 - x^k)^5 / (1 - x^k + x^(2k))^4.
a(n) = - A132000(n) unless n = 0.
Expansion of 1 - (9 * phi(-q) * phi(-q^3)^5 - phi(-q)^5 * phi(-q^3)) / 8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Nov 02 2015
a(n) = -(-1)^n * A113262(n) unless n = 0. - Michael Somos, Nov 02 2015
EXAMPLE
G.f. = q + 5*q^2 + q^3 - 11*q^4 - 24*q^5 + 5*q^6 + 50*q^7 + 53*q^8 + q^9 - 120*q^10 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, -DivisorSum[ n, #^2 (-1)^# KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Nov 02 2015 *)
a[ n_] := SeriesCoefficient[ 1 - QPochhammer[ q] QPochhammer[ q^2]^4 QPochhammer[ q^3]^5 / QPochhammer[ q^6]^4, {q, 0, n}]; (* Michael Somos, Nov 02 2015 *)
a[ n_] := SeriesCoefficient[ 1 - (1/4) EllipticTheta[ 4, 0, q]^2 EllipticTheta[ 4, 0, q^3]^2 EllipticTheta[ 2, 0, q^(1/2)]^3 / EllipticTheta[ 2, 0, q^(3/2)], {q, 0, n}]; (* Michael Somos, Nov 02 2015 *)
a[ n_] := SeriesCoefficient[ 1 - (9 EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^3]^5 - EllipticTheta[ 4, 0, q]^5 EllipticTheta[ 4, 0, q^3]) / 8, {q, 0, n}]; (* Michael Somos, Nov 02 2015 *)
PROG
(PARI) {a(n) = if(n<1, 0, -sumdiv(n, d, d^2 * (-1)^d * kronecker(-3, d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 - eta(x + A) * eta(x^2 + A)^4 * eta(x^3 + A)^5 / eta(x^6 + A)^4, n))};
(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p==2, 2 + ((-4)^(e+1) - 1) / 5, p = p^2 * kronecker(-3, p); (p^(e+1) - 1) / (p-1) )))};
(PARI) q='q+O('q^99); Vec(-eta(q)*eta(q^2)^4*eta(q^3)^5/eta(q^6)^4+1) \\ Altug Alkan, Sep 07 2018
CROSSREFS
Sequence in context: A117637 A332733 A132000 * A113261 A063004 A351573
KEYWORD
sign,mult
AUTHOR
Michael Somos, Aug 06 2007
STATUS
approved