login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132000
Expansion of (1/3) * b(q) * b(q^2) * c(q)^2 / c(q^2) in powers of q where b(), c() are cubic AGM functions.
3
1, -1, -5, -1, 11, 24, -5, -50, -53, -1, 120, 120, 11, -170, -250, 24, 203, 288, -5, -362, -264, -50, 600, 528, -53, -601, -850, -1, 550, 840, 120, -962, -821, 120, 1440, 1200, 11, -1370, -1810, -170, 1272, 1680, -250, -1850, -1320, 24, 2640, 2208, 203, -2451
OFFSET
0,3
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Eq. (32.71).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-q)^2 * phi(-q^3)^2 * psi(q)^3 / psi(q^3) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^2)^4 * eta(q^3)^5 / eta(q^6)^4 in powers of q.
Euler transform of period 6 sequence [-1, -5, -6, -5, -1, -6, ...].
a(n) = -b(n) where b() is multiplicative with b(2^e) = 2+((-4)^(e+1)-1)/5, b(3^e) = 1, b(p^e) = (q^(e+1) - 1) / (q-1) where q = p^2*Kronecker(-3, p) if p > 3.
a(3*n) = a(n).
G.f.: 1 - Sum_{k>0} k^2 * Kronecker(-3, k) * x^k / (1 - (-x)^k) = Product_{k>0} (1 - x^(3*k)) * (1 - x^k)^5 / (1 - x^k + x^(2*k))^4.
a(n) = (-1)^n * A113261(n). Convolution of A123330 and A131943.
a(n) = -A132000(n) unless n=0.
Expansion of (9 * phi(-q) * phi(-q^3)^5 - phi(-q)^5 * phi(-q^3)) / 8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Nov 03 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 15552^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A122373. - Michael Somos, Nov 03 2015
EXAMPLE
G.f. = 1 - x - 5*x^2 - x^3 + 11*x^4 + 24*x^5 - 5*x^6 - 50*x^7 - 53*x^8 - x^9 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, #^2 (-1)^# KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Nov 03 2015 *)
a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 4, 0, q]^2 EllipticTheta[ 4, 0, q^3]^2 EllipticTheta[ 2, 0, q^(1/2)]^3 / EllipticTheta[ 2, 0, q^(3/2)], {q, 0, n}]; (* Michael Somos, Nov 03 2015 *)
a[ n_] := SeriesCoefficient[(9 EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^3]^5 - EllipticTheta[ 4, 0, q]^5 EllipticTheta[ 4, 0, q^3]) / 8, {q, 0, n}]; (* Michael Somos, Nov 03 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ q] QPochhammer[ q^2]^4 QPochhammer[ q^3]^5 / QPochhammer[ q^6]^4, {q, 0, n}]; (* Michael Somos, Nov 03 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, sumdiv(n, d, d^2 * (-1)^d * kronecker(-3, d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A)^4 * eta(x^3 + A)^5 / eta(x^6 + A)^4, n))};
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); - prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p==2, 2 + ((-4)^(e+1) - 1) / 5, p = p^2 * kronecker(-3, p); (p^(e+1) - 1) / (p-1) )))};
(Magma) A := Basis( ModularForms( Gamma1(6), 3), 50); A[1] - A[2] - 5*A[3] - A[4]; /* Michael Somos, Nov 03 2015 */
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 06 2007
STATUS
approved