OFFSET
0,3
COMMENTS
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Eq. (32.71).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-q)^2 * phi(-q^3)^2 * psi(q)^3 / psi(q^3) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^2)^4 * eta(q^3)^5 / eta(q^6)^4 in powers of q.
Euler transform of period 6 sequence [-1, -5, -6, -5, -1, -6, ...].
a(n) = -b(n) where b() is multiplicative with b(2^e) = 2+((-4)^(e+1)-1)/5, b(3^e) = 1, b(p^e) = (q^(e+1) - 1) / (q-1) where q = p^2*Kronecker(-3, p) if p > 3.
a(3*n) = a(n).
G.f.: 1 - Sum_{k>0} k^2 * Kronecker(-3, k) * x^k / (1 - (-x)^k) = Product_{k>0} (1 - x^(3*k)) * (1 - x^k)^5 / (1 - x^k + x^(2*k))^4.
a(n) = -A132000(n) unless n=0.
Expansion of (9 * phi(-q) * phi(-q^3)^5 - phi(-q)^5 * phi(-q^3)) / 8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Nov 03 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 15552^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A122373. - Michael Somos, Nov 03 2015
EXAMPLE
G.f. = 1 - x - 5*x^2 - x^3 + 11*x^4 + 24*x^5 - 5*x^6 - 50*x^7 - 53*x^8 - x^9 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, #^2 (-1)^# KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Nov 03 2015 *)
a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 4, 0, q]^2 EllipticTheta[ 4, 0, q^3]^2 EllipticTheta[ 2, 0, q^(1/2)]^3 / EllipticTheta[ 2, 0, q^(3/2)], {q, 0, n}]; (* Michael Somos, Nov 03 2015 *)
a[ n_] := SeriesCoefficient[(9 EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^3]^5 - EllipticTheta[ 4, 0, q]^5 EllipticTheta[ 4, 0, q^3]) / 8, {q, 0, n}]; (* Michael Somos, Nov 03 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ q] QPochhammer[ q^2]^4 QPochhammer[ q^3]^5 / QPochhammer[ q^6]^4, {q, 0, n}]; (* Michael Somos, Nov 03 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, sumdiv(n, d, d^2 * (-1)^d * kronecker(-3, d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A)^4 * eta(x^3 + A)^5 / eta(x^6 + A)^4, n))};
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); - prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p==2, 2 + ((-4)^(e+1) - 1) / 5, p = p^2 * kronecker(-3, p); (p^(e+1) - 1) / (p-1) )))};
(Magma) A := Basis( ModularForms( Gamma1(6), 3), 50); A[1] - A[2] - 5*A[3] - A[4]; /* Michael Somos, Nov 03 2015 */
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 06 2007
STATUS
approved