The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113263 a(n) is the number of ways the set {1^3, 2^3, ..., n^3} can be partitioned into two sets of equal sums. 8
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 2, 62, 0, 0, 268, 356, 0, 0, 2287, 1130, 0, 0, 5317, 36879, 0, 0, 203016, 319415, 0, 0, 2124580, 1631750, 0, 0, 10953868, 41280525, 0, 0, 242899218, 472958485, 0, 0, 2984270739, 3419746788, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,15 COMMENTS a(n)=0 when n == 1 or 2 mod 4. LINKS Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 1..130 (first 100 terms from Alois P. Heinz) FORMULA a(n) is half the coefficient of x^0 in product(x^(k^3)+x^(k^-3), k=1..n). MAPLE A113263:=proc(n) local i, p, t; t:= NULL; p:=1; for i to n do p:=p*(x^(i^3)+x^(-i^3)); t:=t, coeff(p, x, 0)/2; od; t; end; MATHEMATICA p = 1; t = {}; Do[p = Expand[p(x^(n^3) + x^(-n^3))]; AppendTo[t, Select[ p, NumberQ[ # ] &]/2], {n, 56}]; t (* Robert G. Wilson v *) CROSSREFS Cf. A058498, A083527. Sequence in context: A059431 A289358 A271698 * A063658 A237053 A209777 Adjacent sequences:  A113260 A113261 A113262 * A113264 A113265 A113266 KEYWORD nonn AUTHOR Floor van Lamoen, Oct 21 2005 EXTENSIONS More terms from Robert G. Wilson v and Tony Noe, Oct 27 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 22:04 EDT 2021. Contains 347651 sequences. (Running on oeis4.)