Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Mar 12 2021 22:24:43
%S 1,1,-5,1,11,-24,-5,50,-53,1,120,-120,11,170,-250,-24,203,-288,-5,362,
%T -264,50,600,-528,-53,601,-850,1,550,-840,120,962,-821,-120,1440,
%U -1200,11,1370,-1810,170,1272,-1680,-250,1850,-1320,-24,2640,-2208,203,2451,-3005,-288,1870,-2808
%N Expansion of (9*phi(q)*phi(q^3)^5 - phi(q)^5*phi(q^3))/8 in powers of q where phi(q) is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%D B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 226 Entry 4(ii).
%H G. C. Greubel, <a href="/A113261/b113261.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Euler transform of period 12 sequence [1, -6, 6, -5, 1, -12, 1, -5, 6, -6, 1, -6, ...].
%F Expansion of eta(q^2)^7 * eta(q^6)^11 / (eta(q) * eta(q^3)^5 * eta(q^4) * eta(q^12)^5) in powers of q.
%F a(n) is multiplicative and a(3^e) = 1, a(2^e) = ((-4)^(e+1)-1)/(-4-1)-2, a(p^e) = ((-p^2)^(e+1)-1)/(-p-1) if p == 2 (mod 3), a(p^e) = ((p^2)(e+1)-1)/(p-1) if p == 1 (mod 3).
%F G.f.: 1 + Sum_{k>0} k^2 x^k/(1-(-x)^k) Kronecker(-3, k).
%e G.f. = 1 + q - 5*q^2 + q^3 + 11*q^4 - 24*q^5 - 5*q^6 + 50*q^7 + ... - _Michael Somos_, Sep 07 2018
%t a[n_]:= SeriesCoefficient[(9*EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3]^5 - EllipticTheta[3, 0, q]^5*EllipticTheta[3, 0, q^3])/8, {q, 0, n}]; Table[a[n], {n,0,50}] (* _G. C. Greubel_, Feb 09 2018 *)
%o (PARI) {a(n) = if( n<1, n==0, sumdiv(n, d, d^2 * kronecker(-3, d) * (-1)^(n-d)))};
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^6 + A)^11 / (eta(x + A) * eta(x^3 + A)^5 * eta(x^4 + A) * eta(x^12 + A)^5), n))};
%o (PARI) {a(n) = my(A, p, e, t); if( n<1, n==0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, t=p^2*(-1)^(p%3==2); (t^(e+1) - 1) / (t-1) - 2*(p==2))))};
%K sign,mult
%O 0,3
%A _Michael Somos_, Oct 21 2005