OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of partitions of n such that every part is not congruent to 3 mod 6. More generally, g.f. for number of partitions of n such that every odd part occurs at most m times is product_{n=1..oo} (1-q^((m+1)*(2*n-1)))/(1-q^n). Similarly, g.f. for number of partitions of n such that every even part occurs at most m times is product_{n=1..oo} (1-q^((2*m+2)*n))/(1-q^n). - Vladeta Jovovic, Aug 01 2007
LINKS
Brian Drake and Seiichi Manyama, Table of n, a(n) for n = 0..1000 (first 101 terms from Brian Drake)
Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953.
Mircea Merca, Overpartitions in terms of 2-adic valuation, Aequat. Math. (2024). See p. 11.
James A. Sellers, Elementary Proofs of Two Congruences for Partitions with Odd Parts Repeated at Most Twice, arXiv:2409.12321 [math.NT], 2024. See p. 2.
Michael Somos, Introduction to Ramanujan theta functions.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
G.f.: product_{n=1..oo} (1-q^(6n-3))/(1-q^n).
Expansion of chi(-x^3) / f(-x) in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Aug 05 2007
Expansion of q^(1/6) * eta(q^3) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Aug 05 2007
Euler transform of period 6 sequence [ 1, 1, 0, 1, 1, 1, ...]. - Michael Somos, Aug 05 2007
a(n) ~ sqrt(5) * exp(sqrt(5*n)*Pi/3) / (12*n). - Vaclav Kotesovec, Dec 11 2016
EXAMPLE
a(6) = 8 because we have 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 2+2+2 and 2+2+1+1. The three excluded partitions of 6 are 3+1+1+1, 2+1+1+1+1 and 1+1+1+1+1+1.
G.f. = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 5*x^5 + 8*x^6 + 10*x^7 + 15*x^8 + ...
G.f. = 1/q + q^5 + 2*q^11 + 2*q^17 + 4*q^23 + 5*q^29 + 8*q^35 + 10*q^41 + ...
MAPLE
A:= series(product( (1-q^(6*n-3))/(1-q^n), n=1..20), q, 21): seq(coeff(A, q, i), i=0..20);
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] / (QPochhammer[ x] QPochhammer[ x^6]), {x, 0, n}]; (* Michael Somos, Jan 29 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^6] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
nmax = 50; CoefficientList[Series[Product[1 / ((1-x^k) * (1+x^(3*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 11 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Aug 05 2007 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Brian Drake, Jul 30 2007
STATUS
approved