login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326526
Sum of the seventh largest parts of the partitions of n into 9 squarefree parts.
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 10, 15, 19, 26, 31, 43, 51, 67, 78, 103, 119, 152, 172, 219, 250, 308, 348, 429, 486, 585, 658, 794, 892, 1063, 1185, 1410, 1572, 1847, 2053, 2407, 2670, 3095, 3425, 3964, 4380, 5030, 5532, 6344, 6974, 7939
OFFSET
0,12
FORMULA
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q)^2 * o, where mu is the Möbius function (A008683).
a(n) = A326523(n) - A326524(n) - A326525(n) - A326527(n) - A326528(n) - A326529(n) - A326530(n) - A326531(n) - A326532(n).
MATHEMATICA
Table[Total[Select[IntegerPartitions[n, {9}], AllTrue[#, SquareFreeQ]&][[All, 7]]], {n, 0, 60}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 05 2020 *)
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 11 2019
STATUS
approved