This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271593 Expansion of psi(-x^3) / f(-x) in powers of x where psi(), f() are Ramanujan theta functions. 1
 1, 1, 2, 2, 4, 5, 8, 10, 15, 18, 26, 32, 44, 54, 72, 88, 115, 140, 180, 218, 276, 333, 416, 500, 618, 740, 906, 1080, 1312, 1558, 1880, 2224, 2666, 3143, 3746, 4402, 5220, 6114, 7216, 8426, 9903, 11530, 13498, 15672, 18280, 21168, 24608, 28424, 32940, 37956 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..2000 Andrew Sills, Rademacher-Type Formulas for Restricted Partition and Overpartition Functions, Ramanujan Journal, 23 (1-3): 253-264, 2010. Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of f(x, x^5) / phi(-x^2) in powers of x where phi(), f(, ) are Ramanujan theta functions. Expansion of q^(-1/3) * eta(q^3) * eta(q^12) / (eta(q) * eta(q^6)) in powers of q. Euler transform of period 12 sequence [ 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, ...]. G.f.: Sum_{k>=0} x^(k*(k+1)) * (-x^2, x^2)_k / (x, x)_{2*k+1}. a(n) ~ Pi * BesselI(1, Pi*sqrt(3*n+1) / sqrt(6)) / (4*sqrt(3*n+1)) ~ exp(sqrt(n/2)*Pi) / (2^(9/4)*sqrt(3)*n^(3/4)) * (1 + (Pi/6 - 3/(4*Pi))/sqrt(2*n) + (Pi^2/144 - 15/(64*Pi^2) - 5/16)/n). - Vaclav Kotesovec, Apr 18 2016, extended Jan 10 2017 EXAMPLE G.f. = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 5*x^5 + 8*x^6 + 10*x^7 + 15*x^8 + ... G.f. = q + q^4 + 2*q^7 + 2*q^10 + 4*q^13 + 5*q^16 + 8*q^19 + 10*q^22 + ... MATHEMATICA nmax = 50; CoefficientList[Series[Product[(1-x^(3*k)) * (1+x^(6*k)) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 18 2016 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^6 + A)), n))}; CROSSREFS Sequence in context: A303939 A326446 A323530 * A131945 A240308 A326526 Adjacent sequences:  A271590 A271591 A271592 * A271594 A271595 A271596 KEYWORD nonn AUTHOR Michael Somos, Apr 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 01:32 EST 2019. Contains 330013 sequences. (Running on oeis4.)