login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 - (phi(-q) * phi(-q^3))^2)/4 in powers of q where phi() is a Ramanujan theta function.
2

%I #24 Sep 12 2023 02:28:37

%S 1,-1,1,-5,6,-1,8,-13,1,-6,12,-5,14,-8,6,-29,18,-1,20,-30,8,-12,24,

%T -13,31,-14,1,-40,30,-6,32,-61,12,-18,48,-5,38,-20,14,-78,42,-8,44,

%U -60,6,-24,48,-29,57,-31,18,-70,54,-1,72,-104,20,-30,60,-30,62

%N Expansion of (1 - (phi(-q) * phi(-q^3))^2)/4 in powers of q where phi() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%D Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Eq. (32.66).

%H G. C. Greubel, <a href="/A131947/b131947.txt">Table of n, a(n) for n = 1..10000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>.

%F a(n) is multiplicative with a(2^e) = 3 - 2^(e+1), a(3^e) = 1, a(p^e) = (p^(e+1) - 1) / (p-1) if p>3.

%F G.f.: Sum_{k>0} k * (-x)^k / (1 - x^k) * Kronecker(9, k) = ((theta_3(-x) * theta_3(-x^3))^2 - 1) / 4.

%F a(n) = -(-1)^n * A113262(n). -4 * a(n) = A131946(n) unless n=0.

%F Dirichlet g.f.: (1 - 1/2^(s-2)) * (1 - 1/3^(s-1)) * zeta(s-1) * zeta(s). - _Amiram Eldar_, Sep 12 2023

%e G.f. = x - x^2 + x^3 - 5*x^4 + 6*x^5 - x^6 + 8*x^7 - 13*x^8 + x^9 - 6*x^10 + ...

%t a[ n_] := SeriesCoefficient[ (1 - (EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^3])^2) / 4, {q, 0, n}]; (* _Michael Somos_, Nov 11 2015 *)

%t a[ n_] := SeriesCoefficient[ (1 - (QPochhammer[ q] QPochhammer[ q^3])^4 / (QPochhammer[ q^2] QPochhammer[ q^6])^2) / 4, {q, 0, n}]; (* _Michael Somos_, Nov 11 2015 *)

%t a[ n_] := If[ n < 1, 0, Sum[ d {0, 1, -1, 0, -1, 1}[[Mod[ d, 6] + 1]], {d, Divisors @ n}]]; (* _Michael Somos_, Nov 11 2015 *)

%t a[ n_] := If[ n < 1, 0, Sum[ n/d {6, 1, -3, -2, -3, 1}[[Mod[ d, 6] + 1]], {d, Divisors @ n}]]; (* _Michael Somos_, Nov 11 2015 *)

%o (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d*((abs(d%6-3) == 2) - (abs(d%6-3) == 1))))};

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - (eta(x + A) * eta(x^3 + A))^4 / (eta(x^2 + A) * eta(x^6 + A))^2) / 4, n))};

%o (PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 3 - p^(e+1), p==3, 1, (p^(e+1) - 1) / (p-1) )))};

%Y Cf. A113262, A131946.

%Y Cf. A000122, A000700, A010054, A121373.

%K sign,easy,mult

%O 1,4

%A _Michael Somos_, Jul 30 2007