login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243763
Expansion of q * phi(q)^3 * psi(q^2)^4 in powers of q where phi(), psi() are Ramanujan theta functions.
1
1, 6, 16, 32, 60, 92, 128, 192, 253, 316, 432, 512, 604, 792, 896, 1024, 1272, 1410, 1584, 1920, 2104, 2236, 2688, 2944, 3101, 3732, 3904, 4096, 4884, 5080, 5376, 6144, 6424, 6776, 7776, 8096, 8188, 9492, 9856, 10112, 11664, 11704, 11952, 13824, 14100, 14360
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^11 * eta(q^4)^2 / eta(q)^6 in powers of q.
Euler transform of period 4 sequence [ 6, -5, 6, -7, ...].
EXAMPLE
G.f. = q + 6*q^2 + 16*q^3 + 32*q^4 + 60*q^5 + 92*q^6 + 128*q^7 + 192*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^3 EllipticTheta[ 2, 0, q]^4 / 16, {q, 0, n}];
a[ n_] := SeriesCoefficient[ q QPochhammer[ q^2]^11 QPochhammer[ q^4]^2 / QPochhammer[ q]^6, {q, 0, n}];
nmax = 50; CoefficientList[Series[Product[(1-x^k)^7 * (1+x^(2*k))^2 * (1+x^k)^13, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2016 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^11 * eta(x^4 + A)^2 / eta(x + A)^6, n))};
(Magma) Basis( ModularForms( Gamma0(4), 7/2), 50) [2] ;
CROSSREFS
Sequence in context: A036488 A131949 A345023 * A061235 A239358 A171494
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 10 2014
STATUS
approved