login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243760
Expansion of (sqrt(8*x+4*sqrt(1-4*x)-3)-1)/(2*sqrt(1-4*x)-2).
1
0, 1, 1, 4, 11, 40, 138, 512, 1903, 7256, 27910, 108704, 426702, 1688080, 6719252, 26895360, 108171319, 436935544, 1771673454, 7208637920, 29422782282, 120436341360, 494277785356, 2033457590656, 8384379887334, 34642507651952, 143413034719036, 594776592764224
OFFSET
0,4
LINKS
FORMULA
a(n) = (Sum_{k=0..floor((n-1)/2)} 2^k*binomial(2*k+1,k)*binomial(2*n-2*k-2,n-1))/n, n>0, a(0)=0.
G.f. A(x) = x*C(x)*C(2*x^2*C(x)^2), where C(x) is the g.f. of A000108.
G.f. A(x) satisfies A(x)= x*(4*A(x)^4+4*A(x)^2+1)/(2*A(x)^2-A(x)+1).
a(n) ~ sqrt(2+3*sqrt(2)) * 2^(3*n-7/4) * ((1+2*sqrt(2))/7)^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 15 2014
Conjecture D-finite with recurrence: 245*n*(n-1)*(n+1)*a(n) -140*n*(n-1)*(28*n-53)*a(n-1) +4*(n-1)*(5812*n^2-29864*n+36585)*a(n-2) +16*(-3368*n^3+35040*n^2-111784*n+110667)*a(n-3) +128*(-152*n^3-1224*n^2+14756*n-29655)*a(n-4) +2048*(2*n-9)*(74*n^2-567*n+988)*a(n-5) -98304*(n-6)*(2*n-9)*(2*n-11)*a(n-6)=0. - R. J. Mathar, Jun 07 2016
MATHEMATICA
CoefficientList[Series[(-1 + Sqrt[-3 + 4*Sqrt[1-4*x] + 8*x])/(-2 + 2*Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 15 2014 *)
PROG
(Maxima)
a(n):=sum(2^k*binomial(2*k+1, k)*binomial(2*n-2*k-2, n-1), k, 0, (n-1)/2)/n;
(PARI) my(x='x+O('x^50)); concat([0], Vec((sqrt(8*x+4*sqrt(1-4*x)-3)-1)/(2*sqrt(1-4*x)-2))) \\ G. C. Greubel, Jun 02 2017
CROSSREFS
Cf. A000108.
Sequence in context: A149263 A149264 A264331 * A149265 A149266 A149267
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Jun 10 2014
STATUS
approved