The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243757 a(n) = Product_{i=1..n} A060904(i). 3
 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, 25, 25, 25, 25, 125, 125, 125, 125, 125, 625, 625, 625, 625, 625, 15625, 15625, 15625, 15625, 15625, 78125, 78125, 78125, 78125, 78125, 390625, 390625, 390625, 390625, 390625, 1953125, 1953125, 1953125, 1953125, 1953125, 9765625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS This is the generalized factorial for A060904. a(0) = 1 as it represents the empty product. a(n) is the largest power of 5 that divides n!, or the order of a 5-Sylow subgroup of the symmetric group of degree n. - David Radcliffe, Sep 03 2021 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143. FORMULA a(n) = Product_{i=1..n} A060904(i). a(n) = 5^(A027868(n)). MATHEMATICA Table[Product[5^IntegerExponent[k, 5], {k, 1, n}], {n, 0, 20}] (* G. C. Greubel, Dec 24 2016 *) PROG (Sage) S=[0]+[5^valuation(i, 5) for i in [1..100]] [prod(S[1:i+1]) for i in [0..99]] (Haskell) a243757 n = a243757_list !! n a243757_list = scanl (*) 1 a060904_list -- Reinhard Zumkeller, Feb 04 2015 (PARI) a(n) = prod(k=1, n, 5^valuation(k, 5)); \\ G. C. Greubel, Dec 24 2016 CROSSREFS Cf. A027868, A060818, A060828, A060904, A242954. Sequence in context: A246839 A077307 A181943 * A321689 A369340 A368870 Adjacent sequences: A243754 A243755 A243756 * A243758 A243759 A243760 KEYWORD nonn AUTHOR Tom Edgar, Jun 10 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 08:53 EDT 2024. Contains 375059 sequences. (Running on oeis4.)