login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243757
a(n) = Product_{i=1..n} A060904(i).
4
1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, 25, 25, 25, 25, 125, 125, 125, 125, 125, 625, 625, 625, 625, 625, 15625, 15625, 15625, 15625, 15625, 78125, 78125, 78125, 78125, 78125, 390625, 390625, 390625, 390625, 390625, 1953125, 1953125, 1953125, 1953125, 1953125, 9765625
OFFSET
0,6
COMMENTS
This is the generalized factorial for A060904.
a(0) = 1 as it represents the empty product.
a(n) is the largest power of 5 that divides n!, or the order of a 5-Sylow subgroup of the symmetric group of degree n. - David Radcliffe, Sep 03 2021
LINKS
Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
FORMULA
a(n) = Product_{i=1..n} A060904(i).
a(n) = 5^(A027868(n)).
MATHEMATICA
Table[Product[5^IntegerExponent[k, 5], {k, 1, n}], {n, 0, 20}] (* G. C. Greubel, Dec 24 2016 *)
PROG
(Sage)
S=[0]+[5^valuation(i, 5) for i in [1..100]]
[prod(S[1:i+1]) for i in [0..99]]
(Haskell)
a243757 n = a243757_list !! n
a243757_list = scanl (*) 1 a060904_list
-- Reinhard Zumkeller, Feb 04 2015
(PARI) a(n) = prod(k=1, n, 5^valuation(k, 5)); \\ G. C. Greubel, Dec 24 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Tom Edgar, Jun 10 2014
STATUS
approved