login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{i=1..n} A060904(i).
4

%I #27 Sep 04 2021 03:54:37

%S 1,1,1,1,1,5,5,5,5,5,25,25,25,25,25,125,125,125,125,125,625,625,625,

%T 625,625,15625,15625,15625,15625,15625,78125,78125,78125,78125,78125,

%U 390625,390625,390625,390625,390625,1953125,1953125,1953125,1953125,1953125,9765625

%N a(n) = Product_{i=1..n} A060904(i).

%C This is the generalized factorial for A060904.

%C a(0) = 1 as it represents the empty product.

%C a(n) is the largest power of 5 that divides n!, or the order of a 5-Sylow subgroup of the symmetric group of degree n. - _David Radcliffe_, Sep 03 2021

%H Reinhard Zumkeller, <a href="/A243757/b243757.txt">Table of n, a(n) for n = 0..1000</a>

%H Tyler Ball, Tom Edgar, and Daniel Juda, <a href="http://dx.doi.org/10.4169/math.mag.87.2.135">Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem</a>, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.

%F a(n) = Product_{i=1..n} A060904(i).

%F a(n) = 5^(A027868(n)).

%t Table[Product[5^IntegerExponent[k, 5], {k, 1, n}], {n, 0, 20}] (* _G. C. Greubel_, Dec 24 2016 *)

%o (Sage)

%o S=[0]+[5^valuation(i, 5) for i in [1..100]]

%o [prod(S[1:i+1]) for i in [0..99]]

%o (Haskell)

%o a243757 n = a243757_list !! n

%o a243757_list = scanl (*) 1 a060904_list

%o -- _Reinhard Zumkeller_, Feb 04 2015

%o (PARI) a(n) = prod(k=1,n, 5^valuation(k,5)); \\ _G. C. Greubel_, Dec 24 2016

%Y Cf. A027868, A060818, A060828, A060904, A242954.

%K nonn

%O 0,6

%A _Tom Edgar_, Jun 10 2014