OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = (Sum_{k=0..floor(n/2)} 2^k*binomial(2*k-1,k)*binomial(2*n-2*k-2,n-2))/(n-1), n>1, a(0)=-1, a(1)=1.
G.f.: -1/(C(x)*C(2*x^2*C(x)^2)), where C(x) is g.f. of A000108.
a(n) ~ sqrt(19/sqrt(2)-3) * 2^(3*n-13/4) * ((1+2*sqrt(2))/7)^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 15 2014
Conjecture: 245*n*(n-1)*(n-2)*a(n) -140*(n-1)*(n-2)*(28*n-81)*a(n-1) +4*(n-2)*(5812*n^2-41488*n+72261)*a(n-2) +16*(-3368*n^3+45144*n^2-191968*n+260859)*a(n-3) +128*(-152*n^3-768*n^2+16748*n-45483)*a(n-4) +2048*(2*n-11)*(74*n^2-715*n+1629)*a(n-5) -98304*(n-7)*(2*n-11)*(2*n-13)*a(n-6)=0. - R. J. Mathar, Jun 07 2016
MATHEMATICA
CoefficientList[Series[-2*(-1 + Sqrt[1-4*x])*x/(-1 + Sqrt[-3 + 4*Sqrt[1-4*x] + 8*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 15 2014 *)
PROG
(Maxima)
a(n):=if n=0 then -1 else if n=1 then 1 else sum(2^k*binomial(2*k-1, k)*binomial(2*n-2*k-2, n-2), k, 0, (n)/2)/(n-1);
(PARI) a(n) = if (n==0, -1, if (n==1, 1, sum(k=0, n\2, 2^k*binomial(2*k-1, k)*binomial(2*n-2*k-2, n-2))/(n-1))); \\ Michel Marcus, Jun 10 2014
CROSSREFS
KEYWORD
sign,changed
AUTHOR
Vladimir Kruchinin, Jun 10 2014
STATUS
approved