login
A134468
Numbers n such that 2^n and 3^n have the same leading digit.
0
0, 17, 28, 34, 40, 51, 57, 68, 80, 84, 85, 91, 97, 103, 107, 108, 114, 120, 125, 130, 142, 143, 147, 154, 159, 170, 176, 182, 187, 193, 199, 204, 206, 210, 216, 227, 233, 244, 250, 256, 260, 261, 267, 273, 278, 283, 284, 296, 301, 307, 318, 319, 323, 324, 330
OFFSET
1,2
MAPLE
A000030 := proc(n) op(-1, convert(n, base, 10)) ; end: isA134468 := proc(n) if A000030(2^n) = A000030(3^n) then true ; else false; fi ; end: for n from 0 to 800 do if isA134468(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, Jan 30 2008
MATHEMATICA
Select[Range[0, 500], IntegerDigits[2^# ][[1]] == IntegerDigits[3^# ][[1]] &] (* Stefan Steinerberger, Jan 21 2008 *)
CROSSREFS
Sequence in context: A293927 A269307 A364555 * A366963 A032611 A255200
KEYWORD
nonn,base
AUTHOR
Lekraj Beedassy, Jan 20 2008
EXTENSIONS
More terms from Stefan Steinerberger, Jan 21 2008
More terms from R. J. Mathar, Jan 30 2008
STATUS
approved