login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269307
Consider the sum of the divisors of a number x>1. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach x.
7
17, 28, 31, 44, 51, 132, 133, 198, 208, 2528, 9241, 13570, 16577, 177568, 228742, 780889, 878078, 1854920, 2775787, 3663541, 8204010, 66326143, 73734437, 164211532, 670396359, 803230921, 832581731, 1036125551, 1572413223
OFFSET
1,1
COMMENTS
44 works in both directions: sigma(n) -> n and n -> sigma(n). See A269308.
EXAMPLE
Sigma(17) = 18 : 1 + 8 = 9; 8 + 9 = 17.
Sigma(133) = 160 : 1 + 6 + 0 = 7; 6 + 0 + 7 = 13; 0 + 7 + 13 = 20; 7 + 13 + 20 = 40; 13 + 20 + 40 = 73; 20 + 40 + 73 = 133.
MAPLE
with(numtheory): P:=proc(q, h) local a, b, k, n, t, v; v:=array(1..h);
for n from 2 to q do a:=sigma(n); b:=ilog10(a)+1; if b>1 then
for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od;
if v[t]=n then print(n); fi; fi; od; end: P(10^6, 1000);
MATHEMATICA
Select[Range[2, 10^5], (t = #; d = IntegerDigits[DivisorSigma[1, #]]; While[Total[d] < t, d = Join[Rest[d], {Total[d]}]]; Total[d] == t) &] (* Robert Price, May 21 2019 *)
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Paolo P. Lava, Feb 24 2016
EXTENSIONS
a(20)-a(29) from Lars Blomberg, Jan 18 2018
STATUS
approved