login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consider the sum of the divisors of a number x>1. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach x.
7

%I #20 May 21 2019 22:07:07

%S 17,28,31,44,51,132,133,198,208,2528,9241,13570,16577,177568,228742,

%T 780889,878078,1854920,2775787,3663541,8204010,66326143,73734437,

%U 164211532,670396359,803230921,832581731,1036125551,1572413223

%N Consider the sum of the divisors of a number x>1. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach x.

%C 44 works in both directions: sigma(n) -> n and n -> sigma(n). See A269308.

%e Sigma(17) = 18 : 1 + 8 = 9; 8 + 9 = 17.

%e Sigma(133) = 160 : 1 + 6 + 0 = 7; 6 + 0 + 7 = 13; 0 + 7 + 13 = 20; 7 + 13 + 20 = 40; 13 + 20 + 40 = 73; 20 + 40 + 73 = 133.

%p with(numtheory): P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h);

%p for n from 2 to q do a:=sigma(n); b:=ilog10(a)+1; if b>1 then

%p for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);

%p while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od;

%p if v[t]=n then print(n); fi; fi; od; end: P(10^6, 1000);

%t Select[Range[2,10^5], (t = #; d = IntegerDigits[DivisorSigma[1, #]]; While[Total[d] < t, d = Join[Rest[d], {Total[d]}]]; Total[d] == t) &] (* _Robert Price_, May 21 2019 *)

%Y Cf. A007629, A269308, A269309, A269310, A269311, A269312.

%K nonn,base,more

%O 1,1

%A _Paolo P. Lava_, Feb 24 2016

%E a(20)-a(29) from _Lars Blomberg_, Jan 18 2018