login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008952
Leading digit of 2^n.
23
1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 7, 1, 2, 5, 1, 2, 4, 9, 1, 3, 7, 1, 2, 5, 1, 2, 4, 9, 1, 3, 7, 1, 2, 5, 1, 2, 4, 9, 1, 3, 7, 1, 3, 6, 1, 2, 4, 9, 1, 3, 7, 1, 3, 6, 1, 2, 4, 9, 1, 3
OFFSET
0,2
COMMENTS
Statistically, sequence obeys Benford's law, i.e. digit d occurs with probability log_10(1 + 1/d); thus 1 appears about 6.6 times more often than 9. - Lekraj Beedassy, May 04 2005
The most significant digits of the n-th powers of 2 are not cyclic and in the first 1000000 terms, 1 appears 301030 times, 2 appears 176093, 3 appears 124937, 4 appears 96911, 5 appears 79182, 6 appears 66947, 7 appears 57990, 8 appears 51154 and 9 appears 45756 times. - Robert G. Wilson v, Feb 03 2008
In fact the sequence follows Benford's law precisely by the equidistribution theorem. - Charles R Greathouse IV, Oct 11 2015
LINKS
Brady Haran and Dmitry Kleinbock, Powers of 2, Numberphile video (2015). More footage.
Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019).
Wikipedia, Benford's law.
Wikipedia, Zipf's law.
FORMULA
a(n) = [2^n / 10^([log_10(2^n)])] = [2^n / 10^([n*log_10(2)])].
a(n) = A000030(A000079(n)). - Omar E. Pol, Jul 04 2019
MAPLE
a:= n-> parse(""||(2^n)[1]):
seq(a(n), n=0..100); # Alois P. Heinz, Aug 06 2021
MATHEMATICA
a[n_] := First@ IntegerDigits[2^n]; Array[a, 105, 0] (* Robert G. Wilson v, Feb 03 2008 and corrected Nov 24 2014 *)
PROG
(PARI) a(n)=digits(2^n)[1] \\ Charles R Greathouse IV, Oct 11 2015
(Python)
def A008952(n): return int(str(1<<n)[0]) # Chai Wah Wu, Jul 07 2022
CROSSREFS
Sequence in context: A133145 A350208 A317414 * A268516 A021407 A131609
KEYWORD
nonn,base
STATUS
approved