This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133145 Period 4: repeat [1, 2, 4, 8]. 3
 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Terms of the simple continued fraction of 13/(sqrt(3363)-49). Decimal expansion of 416/3333. [Paolo P. Lava, Aug 05 2009] LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,1). FORMULA a(n) == 2*a(n-1) mod 15. a(n) = (1/8)*{19*(n mod 4)-3*[(n+1) mod 4]+[(n+2) mod 4]+3*[(n+3) mod 4]}. - Paolo P. Lava, Jul 03 2008 a(n) = 15/4-(3/4-(3/2)*I)*I^n-(5/4)*(-1)^n-(3/4+(3/2)*I)*(-I)^n. - Paolo P. Lava, Jul 17 2008 a(n) = 2^(n mod 4). - Jaume Oliver Lafont, Mar 27 2009 a(n) = A160700(A000079(n)). [Reinhard Zumkeller, Jun 10 2009] a(n) = 2^n (mod 15). G.f.: (1+2*x)*(4*x^2+1)/ ((1-x)*(1+x)*(x^2+1)). [R. J. Mathar, Apr 13 2010] From Wesley Ivan Hurt, Jul 09 2016: (Start) a(n) = a(n-4) for n>3. a(n) = (15-6*cos(n*Pi/2)-5*cos(n*Pi)-12*sin(n*Pi/2)-5*I*sin(n*Pi))/4. (End) MAPLE seq(op([1, 2, 4, 8]), n=0..50); # Wesley Ivan Hurt, Jul 09 2016 MATHEMATICA PadRight[{}, 100, {1, 2, 4, 8}] (* Wesley Ivan Hurt, Jul 09 2016 *) Table[First@ IntegerDigits[2^n, 16], {n, 0, 120}] (* Michael De Vlieger, Jul 09 2016 *) PROG (PARI) a(n)=2^(n%4) \\ Jaume Oliver Lafont, Mar 27 2009 (Sage) [power_mod(2, n, 15) for n in xrange(0, 80)] # Zerinvary Lajos, Nov 03 2009 (MAGMA) &cat [[1, 2, 4, 8]^^30]; // Wesley Ivan Hurt, Jul 09 2016 CROSSREFS Cf. A069705. [Jaume Oliver Lafont, Mar 27 2009] Cf. A000079, A160700. Sequence in context: A010743 A072032 A023104 * A317414 A008952 A268516 Adjacent sequences:  A133142 A133143 A133144 * A133146 A133147 A133148 KEYWORD nonn,easy AUTHOR Paul Curtz, Dec 16 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 02:29 EDT 2019. Contains 327995 sequences. (Running on oeis4.)