OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
FORMULA
a(n) == 2*a(n-1) mod 15.
a(n) = 2^(n mod 4). - Jaume Oliver Lafont, Mar 27 2009
a(n) = 2^n (mod 15). G.f.: (1+2*x)*(4*x^2+1)/ ((1-x)*(1+x)*(x^2+1)). [R. J. Mathar, Apr 13 2010]
From Wesley Ivan Hurt, Jul 09 2016: (Start)
a(n) = a(n-4) for n>3.
a(n) = (15-6*cos(n*Pi/2)-5*cos(n*Pi)-12*sin(n*Pi/2)-5*I*sin(n*Pi))/4. (End)
MAPLE
seq(op([1, 2, 4, 8]), n=0..50); # Wesley Ivan Hurt, Jul 09 2016
MATHEMATICA
PadRight[{}, 100, {1, 2, 4, 8}] (* Wesley Ivan Hurt, Jul 09 2016 *)
Table[First@ IntegerDigits[2^n, 16], {n, 0, 120}] (* Michael De Vlieger, Jul 09 2016 *)
PROG
(PARI) a(n)=2^(n%4) \\ Jaume Oliver Lafont, Mar 27 2009
(Sage) [power_mod(2, n, 15) for n in range(0, 80)] # Zerinvary Lajos, Nov 03 2009
(Magma) &cat [[1, 2, 4, 8]^^30]; // Wesley Ivan Hurt, Jul 09 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Dec 16 2007
STATUS
approved