login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133146
Antidiagonal sums of the triangle A133128.
2
2, 5, 7, 14, 18, 29, 35, 50, 58, 77, 87, 110, 122, 149, 163, 194, 210, 245, 263, 302, 322, 365, 387, 434, 458, 509, 535, 590, 618, 677, 707, 770, 802, 869, 903, 974, 1010, 1085, 1123, 1202, 1242, 1325, 1367, 1454, 1498, 1589, 1635, 1730, 1778, 1877, 1927, 2030
OFFSET
0,1
FORMULA
First differences: a(n+1) - a(n) = A059029(n+1).
Bisections: a(2n+1) = A005918(n+1). a(2n) = A141631(n+1).
G.f.: (1+2*x)(2 - x + x^3)/((1-x)^3*(1+x)^2). - R. J. Mathar, Oct 15 2008
a(n) = 19/8 + 5*n/4 + 3*n^2/4 - (-1)^n*(n/4 + 3/8). - R. J. Mathar, Oct 15 2008
From Harvey P. Dale, Aug 26 2013: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5); a(0)=2, a(1)=5, a(2)=7, a(3)=14, a(4)=18. (End)
EXAMPLE
a(2) = A133128(2,0) + A133128(1,1) = 10 - 3 = 7.
a(3) = A133128(3,0) + A133128(2,1) = 17 - 3 = 14.
MATHEMATICA
CoefficientList[Series[(1+2x)(2-x+x^3)/((1-x)^3(1+x)^2), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {2, 5, 7, 14, 18}, 60] (* Harvey P. Dale, Aug 26 2013 *)
PROG
(Magma) [19/8 +5*n/4 +3*n^2/4 -(-1)^n*(n/4+3/8): n in [0..60]]; // Vincenzo Librandi, Aug 10 2011
CROSSREFS
Sequence in context: A031457 A044990 A266259 * A217753 A022771 A132603
KEYWORD
nonn,less
AUTHOR
Paul Curtz, Aug 27 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Oct 15 2008
STATUS
approved