login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141631
a(n) = 3*n^2 - 4*n + 3.
6
2, 7, 18, 35, 58, 87, 122, 163, 210, 263, 322, 387, 458, 535, 618, 707, 802, 903, 1010, 1123, 1242, 1367, 1498, 1635, 1778, 1927, 2082, 2243, 2410, 2583, 2762, 2947, 3138, 3335, 3538, 3747, 3962, 4183, 4410, 4643, 4882, 5127, 5378, 5635, 5898, 6167, 6442
OFFSET
1,1
COMMENTS
First bisection of A133146.
Also first bisection of A271713. - Bruno Berselli, Mar 19 2021
FORMULA
a(n) = A133146(2*n-2) = (n - 2)^2 + (n - 1)*(n + 1) + n^2.
First differences: a(n+1) - a(n) = A016969(n-1).
G.f.: x*(2 + x + 3*x^2)/(1 - x)^3. - R. J. Mathar, Oct 15 2008
a(n) = 6*n + a(n-1) - 7 for n > 1, a(1)=2. - Vincenzo Librandi, Nov 25 2010
a(n) = 2*A000290(n)^2 + A067998(n-1) = 2*n^2 + (n - 1)*(n - 3). - L. Edson Jeffery, Nov 30 2013
From Elmo R. Oliveira, Nov 13 2024: (Start)
E.g.f.: exp(x)*(3*x^2 - x + 3) - 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
MATHEMATICA
Table[3 n^2 - 4 n + 3, {n, 50}] (* Harvey P. Dale, Oct 28 2012 *)
PROG
(PARI) a(n)=3*n^2-4*n+3 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. A000004 (third differences), A010722 (second differences).
Sequence in context: A184096 A136583 A307684 * A172188 A077131 A342397
KEYWORD
nonn,less,easy
AUTHOR
Paul Curtz, Aug 28 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Oct 15 2008
STATUS
approved