login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*n^2 - 4*n + 3.
6

%I #42 Nov 14 2024 10:07:41

%S 2,7,18,35,58,87,122,163,210,263,322,387,458,535,618,707,802,903,1010,

%T 1123,1242,1367,1498,1635,1778,1927,2082,2243,2410,2583,2762,2947,

%U 3138,3335,3538,3747,3962,4183,4410,4643,4882,5127,5378,5635,5898,6167,6442

%N a(n) = 3*n^2 - 4*n + 3.

%C First bisection of A133146.

%C Also first bisection of A271713. - _Bruno Berselli_, Mar 19 2021

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = A133146(2*n-2) = (n - 2)^2 + (n - 1)*(n + 1) + n^2.

%F First differences: a(n+1) - a(n) = A016969(n-1).

%F G.f.: x*(2 + x + 3*x^2)/(1 - x)^3. - _R. J. Mathar_, Oct 15 2008

%F a(n) = 6*n + a(n-1) - 7 for n > 1, a(1)=2. - _Vincenzo Librandi_, Nov 25 2010

%F a(n) = 2*A000290(n)^2 + A067998(n-1) = 2*n^2 + (n - 1)*(n - 3). - _L. Edson Jeffery_, Nov 30 2013

%F From _Elmo R. Oliveira_, Nov 13 2024: (Start)

%F E.g.f.: exp(x)*(3*x^2 - x + 3) - 3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

%t Table[3 n^2 - 4 n + 3, {n, 50}] (* _Harvey P. Dale_, Oct 28 2012 *)

%o (PARI) a(n)=3*n^2-4*n+3 \\ _Charles R Greathouse IV_, Jun 17 2017

%Y Cf. A000004 (third differences), A010722 (second differences).

%Y Cf. A000290, A016969, A067998, A133146, A271713.

%K nonn,less,easy

%O 1,1

%A _Paul Curtz_, Aug 28 2008

%E Edited and extended by _R. J. Mathar_, Oct 15 2008