login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016969 a(n) = 6n + 5. 44
5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 209, 215, 221, 227, 233, 239, 245, 251, 257, 263, 269, 275, 281, 287, 293, 299, 305, 311, 317, 323, 329, 335 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 18 ).

Exponents e such that x^e + x - 1 is reducible.

First differences of A141631 (2, 7, 18). Last digit is period 5: repeat 5, 1, 7, 3, 9, fifth quintuplet with A139788 (1, 7, 3, 9, 5) or A139788(n+4). Three other quintuplets are A139788(n+1) = 7, 3, 9, 5, 1, A139788(n+2) = 3, 9, 5, 1, 7 and A139788(n+3) = 9, 5, 1, 7, 3 (the five odd digits). - Paul Curtz, Sep 12 2008

Numbers congruent to {5,11} mod 12. - Gary Detlefs, Mar 07 2010

a(n-1), n>=1, appears as first column in the triangle A239127 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014

Odd unlucky numbers in A050505. - Fred Daniel Kline, Feb 25 2017

LINKS

Table of n, a(n) for n=0..55.

Mark W. Coffey, Bernoulli identities, zeta relations, determinant expressions, Mellin transforms, and representation of the Hurwitz numbers, arXiv:1601.01673 [math.NT], 2016.

Tanya Khovanova, Recursive Sequences

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 949

D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.

William A. Stein, Dimensions of the spaces S_k(Gamma_0(N))

William A. Stein, The modular forms database

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

a(n) = A003415(A003415(A125200(n+1)))/2. - Reinhard Zumkeller, Nov 24 2006

A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008

a(n) = A007310(2*n+1); complement of A016921 with respect to A007310. - Reinhard Zumkeller, Oct 02 2008

From Klaus Brockhaus, Jan 04 2009: (Start)

G.f.: (5+x)/(1-x)^2.

a(0) = 5; for n > 0, a(n) = a(n-1)+6.

(End)

a(n) = A016921(n)+4 = A016933(n)+3 = A016945(n)+2 = A016957(n)+1. - Klaus Brockhaus, Jan 04 2009

a(n) = floor((12n-1)/2) with offset 1..a(1)=5. - Gary Detlefs, Mar 07 2010

a(n) = 4*(3*n+1) - a(n-1) (with a(0)=5). - Vincenzo Librandi, Nov 20 2010

a(n) = floor(1/(1/sin(1/n) - n)). - Clark Kimberling, Feb 19 2010

a(n) = 3*Sum_{k=0..n} binomial(6*n+5, 6*k+2)*bernoulli(6*k+2). - Michel Marcus, Jan 11 2016

MAPLE

a[1]:=-1:for n from 2 to 100 do a[n]:=a[n-1]+6 od: seq(a[n], n=2..47); # Zerinvary Lajos, Mar 16 2008

MATHEMATICA

f[n_]:=6*n+5; lst={}; Do[a=f[n]; AppendTo[lst, a], {n, 0, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 25 2009 *)

6*Range[0, 60]+5 (* or *) NestList[6+#&, 5, 60] (* Harvey P. Dale, Mar 09 2013 *)

PROG

(MAGMA) [ 6*n+5: n in [0..55] ]; // Klaus Brockhaus, Jan 04 2009

(Sage) [i+5 for i in range(338) if gcd(i, 6) == 6] # Zerinvary Lajos, May 20 2009

(PARI) a(n)=6*n+5 \\ Charles R Greathouse IV, Jul 10 2016

CROSSREFS

Cf. A111863, A007310, A008588, A016921, A016933, A016945, A016957.

Cf. A050505 Unlucky numbers.

Sequence in context: A059538 A172337 A101328 * A007528 A144918 A144920

Adjacent sequences:  A016966 A016967 A016968 * A016970 A016971 A016972

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Klaus Brockhaus, Jan 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 05:18 EDT 2017. Contains 287074 sequences.