|
|
A016969
|
|
a(n) = 6*n + 5.
|
|
71
|
|
|
5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 209, 215, 221, 227, 233, 239, 245, 251, 257, 263, 269, 275, 281, 287, 293, 299, 305, 311, 317, 323, 329, 335
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(18).
Exponents e such that x^e + x - 1 is reducible.
a(n-1), n >= 1, appears as first column in the triangle A239127 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
Numbers that are not divisible by their digital root in base 4. - Amiram Eldar, Nov 24 2022
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (5+x)/(1-x)^2.
a(0) = 5; for n > 0, a(n) = a(n-1)+6.
(End)
a(n) = floor((12n-1)/2) with offset 1..a(1)=5. - Gary Detlefs, Mar 07 2010
a(n) = 3*Sum_{k = 0..n} binomial(6*n+5, 6*k+2)*Bernoulli(6*k+2). - Michel Marcus, Jan 11 2016
Sum_{n>=0} (-1)^n/a(n) = Pi/6 - sqrt(3)*arccoth(sqrt(3))/3. - Amiram Eldar, Dec 10 2021
|
|
MATHEMATICA
|
6Range[0, 59] + 5 (* or *) NestList[6 + # &, 5, 60] (* Harvey P. Dale, Mar 09 2013 *)
|
|
PROG
|
(Scala) (1 to 60).map(6 * _ - 1).mkString(", ") // Alonso del Arte, Nov 23 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|