login
A134470
Continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).
4
0, 1, 1, 2, 1, 1, 8, 1, 5, 1, 1, 1, 12, 5, 1, 1, 5, 1, 12, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 2, 2, 2, 1, 11, 1, 6, 1, 3, 2, 1, 1, 1, 1, 1, 2, 6, 7, 1, 4, 2, 1, 1, 1, 13, 1, 1, 1, 2, 4, 2, 11, 1, 2, 5, 1, 8, 1, 78, 10, 1, 64, 1, 29, 1, 3, 1, 1, 1, 2, 1, 12, 1, 2, 1, 4, 1, 2, 1, 2, 32, 1, 92, 1, 14, 1, 10, 12, 2, 3, 16, 2, 1, 1, 1, 1, 8, 3, 15, 1, 2, 2, 1, 4, 4, 2, 8, 1, 1557, 3, 1, 69, 1, 5, 3, 11, 1, 1
OFFSET
0,4
MAPLE
Digits:=100; cfrac(-Zeta(1/2)/sqrt(2*Pi), 30, 'quotients');
MATHEMATICA
ContinuedFraction[ -Zeta[1/2]/Sqrt[2 \[Pi]], 100] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
PROG
(PARI)
default(realprecision, 1000);
c=-zeta(1/2)/sqrt(2*Pi); /* == 0.582597157... (A134469) */
contfrac(c) /* gives 967 terms */
CROSSREFS
Cf. A134469 (Decimal expansion), A134471 (Numerators of continued fraction convergents), A134472 (Denominators of continued fraction convergents).
Sequence in context: A078689 A230069 A276813 * A342992 A119418 A077058
KEYWORD
cofr,nonn,easy
AUTHOR
Hans J. H. Tuenter, Oct 27 2007
EXTENSIONS
More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
STATUS
approved