Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #16 Mar 29 2018 02:44:52
%S 0,1,1,2,1,1,8,1,5,1,1,1,12,5,1,1,5,1,12,1,1,1,1,2,1,1,1,1,2,3,2,2,2,
%T 1,11,1,6,1,3,2,1,1,1,1,1,2,6,7,1,4,2,1,1,1,13,1,1,1,2,4,2,11,1,2,5,1,
%U 8,1,78,10,1,64,1,29,1,3,1,1,1,2,1,12,1,2,1,4,1,2,1,2,32,1,92,1,14,1,10,12,2,3,16,2,1,1,1,1,8,3,15,1,2,2,1,4,4,2,8,1,1557,3,1,69,1,5,3,11,1,1
%N Continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).
%H G. C. Greubel, <a href="/A134470/b134470.txt">Table of n, a(n) for n = 0..10000</a>
%H Hans J. H. Tuenter, <a href="http://dx.doi.org/10.1080/07474940701620998">Overshoot in the Case of Normal Variables: Chernoff's Integral, Latta's Observation and Wijsman's Sum</a>, Sequential Analysis, 26(4) (2007) 481-488.
%p Digits:=100; cfrac(-Zeta(1/2)/sqrt(2*Pi),30,'quotients');
%t ContinuedFraction[ -Zeta[1/2]/Sqrt[2 \[Pi]], 100] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
%o (PARI)
%o default(realprecision,1000);
%o c=-zeta(1/2)/sqrt(2*Pi); /* == 0.582597157... (A134469) */
%o contfrac(c) /* gives 967 terms */
%Y Cf. A134469 (Decimal expansion), A134471 (Numerators of continued fraction convergents), A134472 (Denominators of continued fraction convergents).
%K cofr,nonn,easy
%O 0,4
%A _Hans J. H. Tuenter_, Oct 27 2007
%E More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010