The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298591 Numbers which are the sum of two distinct perfect powers x^k + y^m with x, y, k, m >= 2. 1
 12, 13, 17, 20, 24, 25, 29, 31, 33, 34, 35, 36, 40, 41, 43, 44, 45, 48, 52, 53, 57, 58, 59, 61, 63, 65, 68, 72, 73, 74, 76, 80, 81, 85, 89, 90, 91, 96, 97, 100, 104, 106, 108, 109, 113, 116, 117, 125, 127, 129, 130, 132, 133, 134, 136, 137, 141, 144, 145, 146, 148, 149, 150 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The number of terms between 2^(n-1) and 2^n-1 is, for n = 1, 2, 3, ...: 0, 0, 0, 2, 6, 17, 24, 69, 129*, 215, 425, 891, 1571, 2994, 5655*, 10535, 20132, 38840, 73510, 140730, 268438*, 514262, ... (For terms with * the next larger power of 2 is in the sequence, so it would be, e.g., ..., 130, 214, ... if we count from 2^n+1 to 2^(n+1).) At 2^22 this corresponds to a density of about 25%, decreasing by about 1% at each power of 2. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 Andrew Lohr, Several Topics in Experimental Mathematics, arXiv:1805.00076 [math.CO], 2018. EXAMPLE 12 = 2^2 + 2^3, 13 = 2^2 + 3^2, 17 = 2^3 + 3^2, ... MAPLE N:= 1000: # for all terms <= N PP:= {seq(seq(x^k, k=2..floor(log[x](N))), x=2..floor(sqrt(N)))}: sort(convert(select(`<=`, {seq(seq(PP[i]+PP[j], i=1..j-1), j=2..nops(PP))}, N), list)); # Robert Israel, May 27 2018 MATHEMATICA max = 150; Table[If[x^k == y^m, Nothing, x^k + y^m], {x, 2, Sqrt[max-4]}, {y, x, Sqrt[max-4]}, {k, 2, Log[2, max-4]}, {m, 2, Log[2, max-4]}] // Flatten // Select[#, # <= max &]& // Union (* Jean-François Alcover, Sep 18 2018 *) PROG (PARI) is(n, A=A076467, s=sum2sqr(n))={for(i=1, #s, vecmin(s[i])>1 && s[i][1]!=s[i][2] && return(1)); for(i=2, #A, n>A[i]||return; ispower(n-A[i]) && A[i]*2!=n && return(1)) \\ A076467 must be computed up to limit n. CROSSREFS Cf. A076467, A111231, A304433, A304434, A304435, A304436. Sequence in context: A155147 A246781 A241748 * A225102 A057488 A105733 Adjacent sequences:  A298588 A298589 A298590 * A298592 A298593 A298594 KEYWORD nonn AUTHOR M. F. Hasler, May 26 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 28 23:26 EDT 2021. Contains 346340 sequences. (Running on oeis4.)