login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076467
Perfect powers m^k where m is a positive integer and k >= 3.
35
1, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 512, 625, 729, 1000, 1024, 1296, 1331, 1728, 2048, 2187, 2197, 2401, 2744, 3125, 3375, 4096, 4913, 5832, 6561, 6859, 7776, 8000, 8192, 9261, 10000, 10648, 12167, 13824, 14641, 15625, 16384, 16807
OFFSET
1,2
COMMENTS
If p|n with p prime then p^3|n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (terms n = 1..250 from Reinhard Zumkeller)
FORMULA
For n > 1: GCD(exponents in prime factorization of a(n)) > 2, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
Sum_{n>=1} 1/a(n) = 2 - zeta(2) + Sum_{k>=2} mu(k)*(2 - zeta(k) - zeta(2*k)) = 1.3300056287... - Amiram Eldar, Jul 02 2022
MAPLE
N:= 10^5: # to get all terms <= N
S:= {1, seq(seq(m^k, m = 2 .. floor(N^(1/k))), k=3..ilog2(N))}:
sort(convert(S, list)); # Robert Israel, Sep 30 2015
MATHEMATICA
a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 2, a = Append[a, n]; Print[n]], {n, 2, 17575}]; a
(* Second program: *)
n = 10^5; Join[{1}, Table[m^k, {k, 3, Floor[Log[2, n]]}, {m, 2, Floor[n^(1/k)]}] // Flatten // Union] (* Jean-François Alcover, Feb 13 2018, after Robert Israel *)
PROG
(Haskell)
a076467 n = a076467_list !! (n-1)
a076467_list = 1 : filter ((> 2) . foldl1 gcd . a124010_row) [2..]
-- Reinhard Zumkeller, Apr 13 2012
(Haskell)
import qualified Data.Set as Set (null)
import Data.Set (empty, insert, deleteFindMin)
a076467 n = a076467_list !! (n-1)
a076467_list = 1 : f [2..] empty where
f xs'@(x:xs) s | Set.null s || m > x ^ 3 = f xs $ insert (x ^ 3, x) s
| m == x ^ 3 = f xs s
| otherwise = m : f xs' (insert (m * b, b) s')
where ((m, b), s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 18 2013
(PARI) is(n)=ispower(n)>2||n==1 \\ Charles R Greathouse IV, Sep 03 2015, edited for n=1 by M. F. Hasler, May 26 2018
(PARI) A076467(lim)={my(L=List(1), lim2=logint(lim, 2), m, k); for(k=3, lim2, for(m=2, sqrtnint(lim, k), listput(L, m^k); )); listsort(L, 1); L}
b076467(lim)={my(L=A076467(lim)); for(i=1, #L, print(i , " ", L[i])); } \\ Anatoly E. Voevudko, Sep 29 2015, edited by M. F. Hasler, May 25 2018
(PARI) A076467_vec(LIM, S=List(1))={for(x=2, sqrtnint(LIM, 3), for(k=3, logint(LIM, x), listput(S, x^k))); Set(S)} \\ M. F. Hasler, May 25 2018
(Python)
from sympy import mobius, integer_nthroot
def A076467(n):
def f(x): return int(n-1+x-integer_nthroot(x, 4)[0]+sum(mobius(k)*(integer_nthroot(x, k)[0]+integer_nthroot(x, k<<1)[0]-2) for k in range(3, x.bit_length())))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 14 2024
CROSSREFS
Subsequence of A036966.
Sequence in context: A320966 A377847 A036966 * A111231 A111307 A246549
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Oct 14 2002
EXTENSIONS
Edited by Robert Israel, Sep 30 2015
STATUS
approved