login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320966
Powerful numbers A001694 divisible by a cube > 1.
6
8, 16, 27, 32, 64, 72, 81, 108, 125, 128, 144, 200, 216, 243, 256, 288, 324, 343, 392, 400, 432, 500, 512, 576, 625, 648, 675, 729, 784, 800, 864, 968, 972, 1000, 1024, 1125, 1152, 1296, 1323, 1331, 1352, 1372, 1568, 1600, 1728, 1800, 1936, 1944, 2000, 2025, 2048, 2187, 2197, 2304, 2312, 2401, 2500
OFFSET
1,1
COMMENTS
Powerful numbers that are not squares of squarefree numbers. - Amiram Eldar, Jun 25 2022
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - 15/Pi^2 = 0.4237786821... . - Amiram Eldar, Jun 25 2022
MATHEMATICA
Select[Range[2500], (m = MinMax[FactorInteger[#][[;; , 2]]])[[1]] > 1 && m[[2]] > 2 &] (* Amiram Eldar, Jun 25 2022 *)
PROG
(PARI) isA001694(n)=n=factor(n)[, 2]; for(i=1, #n, if(n[i]==1, return(0))); 1 \\ from Charles R Greathouse IV
isA046099(n)=n=factor(n)[, 2]; for(i=1, #n, if(n[i]>2, return(1))); 0
for (k=1, 2500, if(isA001694(k)&&isA046099(k), print1(k, ", ")))
(Python)
from math import isqrt
from sympy import mobius, integer_nthroot
def A320966(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l = n+x+squarefreepi(isqrt(x))-squarefreepi(integer_nthroot(x, 3)[0]), 0
j = isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
return c+l
return bisection(f, n, n) # Chai Wah Wu, Sep 15 2024
CROSSREFS
Intersection of A001694 and A046099.
Sequence in context: A354561 A349306 A245713 * A377847 A036966 A076467
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Oct 25 2018
STATUS
approved