Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Sep 15 2024 22:01:30
%S 8,16,27,32,64,72,81,108,125,128,144,200,216,243,256,288,324,343,392,
%T 400,432,500,512,576,625,648,675,729,784,800,864,968,972,1000,1024,
%U 1125,1152,1296,1323,1331,1352,1372,1568,1600,1728,1800,1936,1944,2000,2025,2048,2187,2197,2304,2312,2401,2500
%N Powerful numbers A001694 divisible by a cube > 1.
%C Powerful numbers that are not squares of squarefree numbers. - _Amiram Eldar_, Jun 25 2022
%H Hugo Pfoertner, <a href="/A320966/b320966.txt">Table of n, a(n) for n = 1..10000</a>
%F Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - 15/Pi^2 = 0.4237786821... . - _Amiram Eldar_, Jun 25 2022
%t Select[Range[2500], (m = MinMax[FactorInteger[#][[;; , 2]]])[[1]] > 1 && m[[2]] > 2 &] (* _Amiram Eldar_, Jun 25 2022 *)
%o (PARI) isA001694(n)=n=factor(n)[, 2]; for(i=1, #n, if(n[i]==1, return(0))); 1 \\ from _Charles R Greathouse IV_
%o isA046099(n)=n=factor(n)[, 2]; for(i=1, #n, if(n[i]>2, return(1)));0
%o for (k=1,2500,if(isA001694(k)&&isA046099(k),print1(k,", ")))
%o (Python)
%o from math import isqrt
%o from sympy import mobius, integer_nthroot
%o def A320966(n):
%o def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
%o def bisection(f,kmin=0,kmax=1):
%o while f(kmax) > kmax: kmax <<= 1
%o while kmax-kmin > 1:
%o kmid = kmax+kmin>>1
%o if f(kmid) <= kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o return kmax
%o def f(x):
%o c, l = n+x+squarefreepi(isqrt(x))-squarefreepi(integer_nthroot(x,3)[0]), 0
%o j = isqrt(x)
%o while j>1:
%o k2 = integer_nthroot(x//j**2,3)[0]+1
%o w = squarefreepi(k2-1)
%o c -= j*(w-l)
%o l, j = w, isqrt(x//k2**3)
%o return c+l
%o return bisection(f,n,n) # _Chai Wah Wu_, Sep 15 2024
%Y Cf. A000578, A320965.
%Y Intersection of A001694 and A046099.
%Y A001694 \ A062503.
%K nonn
%O 1,1
%A _Hugo Pfoertner_, Oct 25 2018