This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036966 3-full (or cube-full, or cubefull) numbers: if a prime p divides n then so does p^3. 19
 1, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 432, 512, 625, 648, 729, 864, 1000, 1024, 1296, 1331, 1728, 1944, 2000, 2048, 2187, 2197, 2401, 2592, 2744, 3125, 3375, 3456, 3888, 4000, 4096, 4913, 5000, 5184, 5488, 5832, 6561, 6859, 6912, 7776, 8000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also called powerful_3 numbers. For n > 1: A124010(a(n),k) > 2, k = 1..A001221(a(n)). - Reinhard Zumkeller, Dec 15 2013 a(m) mod prime(n) > 0 for m < A258600(n); a(A258600(n)) = A030078(n) = prime(n)^3. - Reinhard Zumkeller, Jun 06 2015 REFERENCES M. J. Halm, More Sequences, Mpossibilities 83, April 2003. A. Ivic, The Riemann Zeta-Function, Wiley, NY, 1985, see p. 407. E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276. LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 P. Erdős and G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math. (Szeged), 7 (1935), 95-102. M. J. Halm, Sequences MAPLE isA036966 := proc(n)     local p ;     for p in ifactors(n)[2] do         if op(2, p) < 3 then             return false;         end if;     end do:     return true ; end proc: A036966 := proc(n)     option remember;     if n = 1 then         1 ;     else         for a from procname(n-1)+1 do             if isA036966(a) then                 return a;             end if;         end do:     end if; end proc: # R. J. Mathar, May 01 2013 MATHEMATICA Select[ Range[2, 8191], Min[ Table[ # [[2]], {1}] & /@ FactorInteger[ # ]] > 2 &] Join[{1}, Select[Range[8000], Min[Transpose[FactorInteger[#]][[2]]]>2&]] (* Harvey P. Dale, Jul 17 2013 *) PROG (Haskell) import Data.Set (singleton, deleteFindMin, fromList, union) a036966 n = a036966_list !! (n-1) a036966_list = 1 : f (singleton z) [1, z] zs where    f s q3s p3s'@(p3:p3s)      | m < p3 = m : f (union (fromList \$ map (* m) ps) s') q3s p3s'      | otherwise = f (union (fromList \$ map (* p3) q3s) s) (p3:q3s) p3s      where ps = a027748_row m            (m, s') = deleteFindMin s    (z:zs) = a030078_list -- Reinhard Zumkeller, Jun 03 2015, Dec 15 2013 (PARI) is(n)=n==1 || vecmin(factor(n)[, 2])>2 \\ Charles R Greathouse IV, Sep 17 2015 (PARI) list(lim)=my(v=List(), t); for(a=1, sqrtnint(lim\1, 5), for(b=1, sqrtnint(lim\a^5, 4), t=a^5*b^4; for(c=1, sqrtnint(lim\t, 3), listput(v, t*c^3)))); Set(v) \\ Charles R Greathouse IV, Nov 20 2015 CROSSREFS Cf. A001694, A030078, A036967, A258600. Sequence in context: A107606 A245713 A320966 * A076467 A111231 A111307 Adjacent sequences:  A036963 A036964 A036965 * A036967 A036968 A036969 KEYWORD easy,nonn,nice AUTHOR EXTENSIONS More terms from Erich Friedman Corrected by Vladeta Jovovic, Aug 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 16 09:21 EST 2018. Contains 317268 sequences. (Running on oeis4.)