login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377847
Powerful numbers that are divisible by the cube of a single prime.
2
8, 16, 27, 32, 64, 72, 81, 108, 125, 128, 144, 200, 243, 256, 288, 324, 343, 392, 400, 500, 512, 576, 625, 675, 729, 784, 800, 968, 972, 1024, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1600, 1800, 1936, 2025, 2048, 2187, 2197, 2304, 2312, 2401, 2500, 2700, 2704, 2888, 2916
OFFSET
1,1
COMMENTS
Numbers whose prime factorization contains one exponent that equals 3, and all the others, if they exist, are equal to 2.
FORMULA
Sum_{n>=1} 1/a(n) = (15/Pi^2) * Sum_{p prime} 1/((p-1)*(p^2+1))) = 0.40258439321745859629... .
MATHEMATICA
q[n_] := Module[{e = Sort[FactorInteger[n][[;; , 2]]]}, e[[-1]] > 2 && (Length[e] == 1 || e[[-2]] == 2)]; With[{max = 3000}, Select[Union@ Flatten@Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], q]]
PROG
(PARI) is(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2])); e[1] > 1 && e[#e] > 2 && (#e == 1 || e[#e - 1] == 2));
CROSSREFS
Subsequence of A001694, A320966 and A377846.
A030078 is a subsequence.
Cf. A082020.
Sequence in context: A349306 A245713 A320966 * A036966 A076467 A111231
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Nov 09 2024
STATUS
approved