login
A377845
Numbers that have more than one odd exponent larger than 1 in their prime factorization.
2
216, 864, 1000, 1080, 1512, 1944, 2376, 2744, 2808, 3000, 3375, 3456, 3672, 4000, 4104, 4320, 4968, 5400, 6048, 6264, 6696, 6750, 7000, 7560, 7776, 7992, 8232, 8856, 9000, 9261, 9288, 9504, 9720, 10152, 10584, 10648, 10976, 11000, 11232, 11448, 11880, 12000, 12744, 13000
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/(p^2*(p+1))) * (1 + Sum_{p prime} (1/(p^3+p^2-1))) = 0.0035024748296318122535... .
LINKS
MATHEMATICA
q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 1 && OddQ[#] &)] > 1; Select[Range[13000], q]
PROG
(PARI) is(k) = #select(x -> x>1 && x%2, factor(k)[, 2]) > 1;
CROSSREFS
Complement of the union of A335275 and A377844.
Subsequence of A295661.
Subsequences: A162142, A179671, A190011.
Cf. A065465.
Sequence in context: A066890 A242296 A223507 * A135590 A187859 A250137
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Nov 09 2024
STATUS
approved