OFFSET
0,1
COMMENTS
From Richard R. Forberg, May 22 2023: (Start)
This constant is the asymptotic mean of (phi(n)/n)*(sigma(n)/n), where phi is the Euler totient function (A000010) and sigma is the sum-of-divisors function (A000203).
In contrast, the product of the separate means, mean(phi(n)/n) * mean(sigma(n)/n), converges to 1, with the asymptotic mean(sigma(n)/n) = Pi^2/6 = zeta(2). See A013661.
Also see A062354. (End)
LINKS
Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeitschr., Vol. 74 (1960), pp. 66-80.
Steven R. Finch, Class number theory, page 7. [Cached copy, with permission of the author]
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 50 and 85.
R. J. Mathar, Hardy-Littlewood Constants Embedded into Infinite Products over All Positive Integers, arXiv:0903.2514 [math.NT], 2009-2011, Table 5, constant Q_1^(2).
G. Niklasch, Some number theoretical constants: 1000-digit values. [Cached copy]
Simon Plouffe, Generalized expansions of real numbers, 2006.
Eric Weisstein's World of Mathematics, Quadratic Class Number Constant.
Eric Weisstein's World of Mathematics, Prime Products.
FORMULA
Sum_{n>=1} phi(n)/(n*J(n)) = (this constant)*A013661 with phi()=A000010() and J() = A007434() [Cohen, Corollary 5.1.1]. - R. J. Mathar, Apr 11 2011
EXAMPLE
0.88151383972517077692839182290...
MATHEMATICA
$MaxExtraPrecision = 1000; digits = 98; terms = 1000; LR = Join[{0, 0, 0}, LinearRecurrence[{-2, -1, 1, 1}, {-3, 4, -5, 3}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*PrimeZetaP[n-1]/(n-1), {n, 4, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
PROG
(PARI) prodeulerrat(1 - 1/(p^2*(p+1))) \\ Amiram Eldar, Mar 14 2021
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Nov 19 2001
STATUS
approved