|
|
A065462
|
|
Number of inequivalent (ordered) solutions to n^2 = sum of 8 squares of integers >= 0.
|
|
2
|
|
|
1, 1, 2, 3, 5, 8, 11, 18, 25, 36, 51, 73, 90, 133, 169, 223, 295, 380, 452, 603, 763, 903, 1115, 1385, 1668, 2025, 2398, 2811, 3535, 4011, 4683, 5503, 6724, 7316, 8684, 9946, 11844, 12994, 15091, 16712, 20493, 21663, 24975, 27536, 33079, 34654, 39957, 43315
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..500
|
|
EXAMPLE
|
a(4)=5 because 16 produces {0,0,0,0,0,0,0,4}, {0,0,0,0,2,2,2,2}, {0,0,0,1,1,1,2,3}, {0,1,1,1,1,2,2,2}, {1,1,1,1,1,1,1,3}.
|
|
MATHEMATICA
|
Length/@Table[SumOfSquaresRepresentations[8, (k)^2], {k, 36}]
|
|
CROSSREFS
|
Cf. A016727, A063014.
Column k=8 of A255212.
Sequence in context: A263710 A135908 A056891 * A062762 A004693 A272136
Adjacent sequences: A065459 A065460 A065461 * A065463 A065464 A065465
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Wouter Meeussen, Nov 18 2001
|
|
EXTENSIONS
|
a(0), a(37)-a(47) from Alois P. Heinz, Feb 16 2015
|
|
STATUS
|
approved
|
|
|
|