login
A056891
a(n) = (s(n)-(n mod 2)) / n where s(n) is A006533.
1
0, 1, 1, 2, 3, 5, 8, 11, 18, 23, 35, 38, 61, 69, 98, 107, 148, 138, 213, 226, 295, 311, 396, 377, 518, 539, 663, 686, 833, 717, 1030, 1059, 1256, 1289, 1513, 1472, 1803, 1843, 2128, 2171, 2490, 2328, 2891, 2942, 3333, 3389, 3818, 3735, 4348, 4413, 4925, 4994
OFFSET
1,4
LINKS
EXAMPLE
a(1) = (1-1) / 1 = 0; a(2) = (2) / 2 = 1; a(3) = (4-1) / 3 = 1; a(4) = (8) / 4 = 2; ...
MATHEMATICA
Block[{f, g}, f[m_, n_] := Boole[Mod[n, m] == 0]; g[n_] := (n^4 - 6 n^3 + 23 n^2 - 18 n + 24)/24 + f[2, n] (-5 n^3 + 42 n^2 - 40 n - 48)/48 - f[4, n] (3 n/4) + f[6, n] (-53 n^2 + 310 n)/12 + f[12, n] (49 n/2) + f[18, n]*32 n + f[24, n]*19 n - f[30, n]*36 n - f[42, n]*50 n - f[60, n]*190 n - f[84, n]*78 n - f[90, n]*48 n - f[120, n]*78 n - f[210, n]*48 n; Array[(g[#] - Mod[#, 2])/# &, 52]] (* Michael De Vlieger, May 13 2022, after T. D. Noe at A006533 *)
CROSSREFS
Cf. A006533.
Sequence in context: A000511 A263710 A135908 * A065462 A062762 A004693
KEYWORD
easy,nonn
AUTHOR
Tod A. Jebe (tjebe(AT)home.com), Sep 05 2000
EXTENSIONS
More terms from Sean A. Irvine, May 13 2022
STATUS
approved